В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для обозначения логической операции «И» – символ «&». В таблице (см. рисунок) приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет. Какое количество страниц (в тысячах) будет найдено по запросу море & волна? Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.
Вообще то, это задача чисто математическая. Пусть есть трехзначное число abc. По условию:
abc + abc
bca Понятно, что максимальным число будет, если сложение в двух младших разрядах идет через перенос -> получим систему уравнений: 2c = a +16 2b +1 = c + 16 2a + 1 = b равносильная ей система 2с = a + 16 c = 2b - 15 b = 2a + 1 подставляем третье во второе, получаем первые два уравнения 2с = a + 16 c = 4a - 13 из этих двух уравнений -> 7a = 42 -> a = 6 -> из третьего уравнения b = 13 13 = D(16), из первого уравнения с = 22/2 = 11(10) = B(16) -> abc(16) = 6DB(16) = 1755(10), DB6(16) = 3510(10) -> 2abc = bca
№ 1 Используя логические операции, запишите высказывания, которые являются истинными при выполнении следующих условий: 1) неверно, что 0 < X ≤ 3 и Y>5; 2) X является max(X,Y); 3) X не является min(X,Y); 4) Z является min(X,Y,Z). № 2 Используя логические операции, запишите высказывания, которые являются истинными при выполнении следующих условий: 1) Y не является max(X,Y,Z) и не является min(X,Y,Z); 2) X,Y,Z равны между собой; 3) каждое из чисел X,Y,Z положительно; 4) каждое из чисел X,Y,Z отрицательно.
По условию:
abc
+ abc
bca
Понятно, что максимальным число будет, если сложение в двух младших разрядах идет через перенос -> получим систему уравнений:
2c = a +16
2b +1 = c + 16
2a + 1 = b
равносильная ей система
2с = a + 16
c = 2b - 15
b = 2a + 1
подставляем третье во второе, получаем первые два уравнения
2с = a + 16
c = 4a - 13 из этих двух уравнений -> 7a = 42 -> a = 6 -> из третьего уравнения b = 13
13 = D(16), из первого уравнения с = 22/2 = 11(10) = B(16)
-> abc(16) = 6DB(16) = 1755(10), DB6(16) = 3510(10) -> 2abc = bca