В ответе не нужно перечислять все различные наборы значений переменных x1, x2, … x8, y1, y2, … y8, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Пояснение.
Из последнего уравнения находим, что возможны три варианта значений x8 и y8: 01, 00, 11. Построим древо вариантов для первой и второй пар значений.
Таким образом, имеем 16 наборов переменных.
Дерево вариантов для пары значений 11:
Получаем 45 вариантов. Таким образом, система будет иметь 45 + 16 = 61 различных наборов решений.
В 3 уравнении если x1=1, то y1 обязательно должен быть равен 1. Если x1=0, значит y1 может быть равен и 1, и 0. Получается, что первому столбцу в цепочке иксов соответствует один набор в цепочке игриков, остальным шести столбцам иксов - семь столбцов игриков. Получается, что количество решений равно 1 + 6*7 = 43
(x1 ∨ x2) ∧ ((x1 ∧ x2) → x3) ∧ (¬x1 ∨ y1) = 1
(x2 ∨ x3) ∧ ((x2 ∧ x3) → x4) ∧ (¬x2 ∨ y2) = 1
…
(x6 ∨ x7) ∧ ((x6 ∧ x7) → x8) ∧ (¬x6 ∨ y6) = 1
(x7 ∨ x8) ∧ (¬x7 ∨ y7) = 1
(¬x8 ∨ y8) = 1
В ответе не нужно перечислять все различные наборы значений переменных x1, x2, … x8, y1, y2, … y8, при которых выполнена данная система равенств. В качестве ответа Вам нужно указать количество таких наборов.
Из последнего уравнения находим, что возможны три варианта значений x8 и y8: 01, 00, 11. Построим древо вариантов для первой и второй пар значений.
Таким образом, имеем 16 наборов переменных.
Дерево вариантов для пары значений 11:
Получаем 45 вариантов. Таким образом, система будет иметь 45 + 16 = 61 различных наборов решений.
x1 1 0 0 0 0 0 0
x2 1 1 0 0 0 0 0
x3 1 1 1 0 0 0 0
x4 1 1 1 1 0 0 0
x5 1 1 1 1 1 0 0
x6 1 1 1 1 1 1 0
y1 1 0 0 0 0 0 0
y2 1 1 0 0 0 0 0
y3 1 1 1 0 0 0 0
y4 1 1 1 1 0 0 0
y5 1 1 1 1 1 0 0
y6 1 1 1 1 1 1 0
В 3 уравнении если x1=1, то y1 обязательно должен быть равен 1. Если x1=0, значит y1 может быть равен и 1, и 0.
Получается, что первому столбцу в цепочке иксов соответствует один набор в цепочке игриков, остальным шести столбцам иксов - семь столбцов игриков.
Получается, что количество решений равно 1 + 6*7 = 43