По представления состояния системы различают: 1. Дискретные модели –– это автоматы, то есть реальные или воображаемые дискретные устройства с некоторым набором внутренних состояний, преобразующие входные сигналы в выходные в соответствии с заданными правилами. 2. Непрерывные модели –– это модели, в которых протекают непрерывные процессы. Например, использование аналоговой ЭВМ для решения дифференциального уравнения, моделирования радиоактивного распада с конденсатора, разряжающегося через резистор и т.д. По степени случайности моделируемого процесса выделяют (рис. 1): 1. Детерминированные модели, которым свойственно переходить из одного состояния в другое в соответствии с жестким алгоритмом, то есть между внутренним состоянием, входными и выходными сигналами имеется однозначное соответствий (модель светофора). 2. Стохастические модели, функционирующие подобно вероятностным автоматам; сигнал на выходе и состояние в следующий момент времени задается матрицей вероятностей. Например, вероятностная модель ученика, компьютерная модель передачи сообщений по каналу связи с шумом и т.д.
анализ и интерпретация результатов, их сопоставление с эмпирическими данными. Затем все это повторяется на следующем уровне.
Разработка компьютерной модели объекта представляет собой последовательность итераций: сначала на основе имеющейся информации о системе S строится модель , проводится серия вычислительных экспериментов, результаты анализируются. При получении новой информации об объекте S учитываются дополнительные факторы, получается модель , поведение которой тоже исследуется на ЭВМ. После этого создаются модели , и т.д. до тех пор, пока не получится модель, с требуемой точностью соответствующая системе S.
#include <iostream>
#include <cmath>
#include <algorithm>
#pragma GCC optimize("Ofast")
using ll = long long;
using ld = long double;
using namespace std;
signed main() {
ll n; // объявляем величину - количество элементов
cin >> n; // считываем величину - количество элементов
ll sum = 0; // заводим переменную - сумму нужных чисел
while(n--){
ll x; // объявляем текущий элемент
cin >> x; // считываем текущий элемент
if(x % 10 == 3 && x % 5 == 0)
sum += x; // если элемент оканчивается на 3 и кратен 5 увеличиваем сумму
}
cout << sum; //выводим сумму
}
Объяснение:
По представления состояния системы различают: 1. Дискретные модели –– это автоматы, то есть реальные или воображаемые дискретные устройства с некоторым набором внутренних состояний, преобразующие входные сигналы в выходные в соответствии с заданными правилами. 2. Непрерывные модели –– это модели, в которых протекают непрерывные процессы. Например, использование аналоговой ЭВМ для решения дифференциального уравнения, моделирования радиоактивного распада с конденсатора, разряжающегося через резистор и т.д. По степени случайности моделируемого процесса выделяют (рис. 1): 1. Детерминированные модели, которым свойственно переходить из одного состояния в другое в соответствии с жестким алгоритмом, то есть между внутренним состоянием, входными и выходными сигналами имеется однозначное соответствий (модель светофора). 2. Стохастические модели, функционирующие подобно вероятностным автоматам; сигнал на выходе и состояние в следующий момент времени задается матрицей вероятностей. Например, вероятностная модель ученика, компьютерная модель передачи сообщений по каналу связи с шумом и т.д.
анализ и интерпретация результатов, их сопоставление с эмпирическими данными. Затем все это повторяется на следующем уровне.
Разработка компьютерной модели объекта представляет собой последовательность итераций: сначала на основе имеющейся информации о системе S строится модель , проводится серия вычислительных экспериментов, результаты анализируются. При получении новой информации об объекте S учитываются дополнительные факторы, получается модель , поведение которой тоже исследуется на ЭВМ. После этого создаются модели , и т.д. до тех пор, пока не получится модель, с требуемой точностью соответствующая системе S.