Воспользуемся расширенной записью шестнадцатиричного числа в десятичной системе счисления. Тогда 3(a*16²+b*16+c)=b*16²+c*16+a; 767a=208b+13c; 59a=16b+c → a=(16b+c)/59 (1) Здесь a,b,c - шестнадцатиричные цифры, имеющие десятичный эквивалент от 0 до 15. Наложим ограничения. a и b не могут быть нулевыми, поскольку с них начинаются числа, а с может быть и нулем. При b=15 и c=15 значение a по формуле (1) не может быть больше (16*15+15)/59, что в целых числах дает 4. Следовательно, нам надо подобрать такие b и c, чтобы a принимало значения от 1 до 4. Будем подставлять эти значения в (1). 1) При а=1 получаем (16b+c)/59=1 → 16b+c=59. b=59/16=3 (нацело), c=59-16*3=11. Искомое число 13B₁₆ 2) При а=2 получаем (16b+c)/59=2 → 16b+c=118. b=118/16=7 (нацело), с=118-16*7=6. Искомое число 276₁₆
Аналогичным образом находим два остальных числа: 3B1₁₆ и 4EC₁₆
Замечание. Фактически, мы получаем числа 59х1, 59х2, 59х3, 59х4 и переводим их в шестнадцатиричную систему счисления, поскольку в формуле (1) в скобках записано представление расширенное представление шестнадцатиричного числа.
1) Функциональные клавиши F1-F12 предназначены для выполнения ряда команд при работе с некоторыми программами.
2) Символьные (алфавитно-цифровые) клавиши используются для ввода информации в компьютер.
3) Клавиши управления курсором перемещают курсор в начало строки, в конец строки, на страницу вверх и на страницу вниз.
4) Дополнительные клавиши, расположенные с правой стороны клавиатуры, могут работать в двух режимах, переключаемых клавишей NumLock:
- при включённом индикаторе NumLock это удобная клавишная панель с цифрами и знаками арифметических операций, расположенными, как на калькуляторе;
- если индикатор NumLock выключен, то работает режим управления курсором.
5) Специальные клавиши (Enter, Esc, Shift, Delete, Backspace, Insert и др.) — это клавиши для специальных действий;
Клавиша Enter завершает ввод команды и вызывает её выполнение. При наборе текста служит для завершения ввода абзаца.
Клавиша Esc, расположенная в левом верхнем углу клавиатуры, обычно служит для отказа от только что выполненного действия.
Объяснение:
3(a*16²+b*16+c)=b*16²+c*16+a;
767a=208b+13c; 59a=16b+c → a=(16b+c)/59 (1)
Здесь a,b,c - шестнадцатиричные цифры, имеющие десятичный эквивалент от 0 до 15.
Наложим ограничения. a и b не могут быть нулевыми, поскольку с них начинаются числа, а с может быть и нулем. При b=15 и c=15 значение a по формуле (1) не может быть больше (16*15+15)/59, что в целых числах дает 4.
Следовательно, нам надо подобрать такие b и c, чтобы a принимало значения от 1 до 4. Будем подставлять эти значения в (1).
1) При а=1 получаем (16b+c)/59=1 → 16b+c=59.
b=59/16=3 (нацело), c=59-16*3=11. Искомое число 13B₁₆
2) При а=2 получаем (16b+c)/59=2 → 16b+c=118.
b=118/16=7 (нацело), с=118-16*7=6. Искомое число 276₁₆
Аналогичным образом находим два остальных числа: 3B1₁₆ и 4EC₁₆
Замечание. Фактически, мы получаем числа 59х1, 59х2, 59х3, 59х4 и переводим их в шестнадцатиричную систему счисления, поскольку в формуле (1) в скобках записано представление расширенное представление шестнадцатиричного числа.