1. При использовании палитры из 2^24 цветов для хранения цвета 1 пикселя используется 24 бита = 3 байта. Пусть количество пикселей в рисунке K, тогда объем памяти, занимаемой одним рисунком = (K*3)/1024 + 128 Кбайт. X = 8*(K*3/1024 + 128)+2.5*1024 2. При использовании палитры из 2^16 цветов для хранения цвета 1 пикселя используется 16 бита = 2 байта. Объем памяти, занимаемой одним рисунком = (K*2)/1024 + 128 Кбайт. X = 20*(K*2/1024 + 128) 8*(K*3/1024 + 128)+2.5*1024 = 20*(K*2/1024 + 128) К = 65536 (количество пикселей в рисунке) X = 20*(K*2/1024 + 128) = 20*(65536*2/1024 + 128) Кбайт = 20*(128 + 128) Кбайт = 5120 Кбайт = 5120/1024 Мбайт = 5 Мбайт
Избавимся от not: X mod A = 0 → X mod 7 = 0 Λ X mod 5 = 0. Заметим, что выражение X mod 7 = 0 Λ X mod 5 = 0 равносильно X mod 35 = 0. Действительно, утверждение "X делится на 5 и 7" истинно только тогда, когда X делится на 5 * 7 = 35. Значит, исходное выражение можно представить как X mod A = 0 → X mod 35 = 0
Следование ложно, если первая часть истинна, а вторая ложна, то есть когда X делится на A, но не делится на 35. Нужно, чтобы таких случаев не было. Если X не делится на 35, то X не должно делиться на A. Так как A % A = 0, для любого A найдётся такой x (x = A), что левая часть всегда истинна. Тогда при данном x правая часть также должна быть истинна: A mod 35 = 0, A = 35; 70 — 2 значения.
Пусть количество пикселей в рисунке K, тогда объем памяти, занимаемой одним рисунком = (K*3)/1024 + 128 Кбайт.
X = 8*(K*3/1024 + 128)+2.5*1024
2. При использовании палитры из 2^16 цветов для хранения цвета 1 пикселя используется 16 бита = 2 байта.
Объем памяти, занимаемой одним рисунком = (K*2)/1024 + 128 Кбайт.
X = 20*(K*2/1024 + 128)
8*(K*3/1024 + 128)+2.5*1024 = 20*(K*2/1024 + 128)
К = 65536 (количество пикселей в рисунке)
X = 20*(K*2/1024 + 128) = 20*(65536*2/1024 + 128) Кбайт =
20*(128 + 128) Кбайт = 5120 Кбайт = 5120/1024 Мбайт = 5 Мбайт
2
Объяснение:
Избавимся от not: X mod A = 0 → X mod 7 = 0 Λ X mod 5 = 0. Заметим, что выражение X mod 7 = 0 Λ X mod 5 = 0 равносильно X mod 35 = 0. Действительно, утверждение "X делится на 5 и 7" истинно только тогда, когда X делится на 5 * 7 = 35. Значит, исходное выражение можно представить как X mod A = 0 → X mod 35 = 0
Следование ложно, если первая часть истинна, а вторая ложна, то есть когда X делится на A, но не делится на 35. Нужно, чтобы таких случаев не было. Если X не делится на 35, то X не должно делиться на A. Так как A % A = 0, для любого A найдётся такой x (x = A), что левая часть всегда истинна. Тогда при данном x правая часть также должна быть истинна: A mod 35 = 0, A = 35; 70 — 2 значения.