В истории математики традиционно выделяются несколько этапов развития математических знаний:
Формирование понятия геометрической фигуры и числа как идеализации реальных объектов и множеств однородных объектов. Появление счёта и измерения, которые позволили сравнивать различные числа, длины, площади и объёмы.Изобретение арифметических операций. Накопление эмпирическим путём (методом проб и ошибок) знаний о свойствах арифметических действий, о измерения площадей и объёмов простых фигур и тел. В этом направлении далеко продвинулись шумеро-вавилонские, китайские и индийские математики древности.Появление в древней Греции дедуктивной математической системы, показавшей, как получать новые математические истины на основе уже имеющихся. Венцом достижений древнегреческой математики стали «Начала» Евклида, игравшие роль стандарта математической строгости в течение двух тысячелетий.Математики стран ислама не только сохранили античные достижения, но и смогли осуществить их синтез с открытиями индийских математиков, которые в теории чисел продвинулись дальше греков.В XVI—XVIII веках возрождается и уходит далеко вперёд европейская математика. Её концептуальной основой в этот период являлась уверенность в том, что математические модели являются своего рода идеальным скелетом Вселенной[1], и поэтому открытие математических истин является одновременно открытием новых свойств реального мира. Главным успехом на этом пути стала разработка математических моделей зависимости переменных величин (функция) и общая теория движения (анализ бесконечно малых). Все естественные науки были перестроены на базе новооткрытых математических моделей, и это привело к колоссальному их прогрессу.В XIX—XX веках становится понятно, что взаимоотношение математики и реальности далеко не столь просто, как ранее казалось. Не существует общепризнанного ответа на своего рода «основной вопрос философии математики»[2]: найти причину «непостижимой эффективности математики в естественных науках»[3]. В этом, и не только в этом, отношении математики разделились на множество дискутирующих школ. Наметилось несколько опасных тенденций[4]: чрезмерно узкая специализация, изоляция от практических задач и др. В то же время мощь математики и её престиж, поддержанный эффективностью применения, высоки как никогда прежде.
Помимо большого исторического интереса, анализ эволюции математики представляет огромную важность для развития философии и методологии математики. Нередко знание истории и прогрессу конкретных математических дисциплин; например, древняя китайская задача (теорема) об остатках сформировала целый раздел теории чисел.
Государственный Академический Сибирский русский народный хор - почти первый профессиональный коллектив русской традиционной культуры. Создан в 1945 в городе Новосибирск перед Великой Победой в Великой Отечественной войне. Первое название Ансамбль Сибирской песни и пляски. Основатель- Николай Корольков. В 1994 получил звание - академический Изначально коллектив был небольшой и составлял всего 18 человек. первое выступление было конечно в мае 1945 на День Победы. Главной задачей коллектива было - нести культуру Сибири ее духовность, традиции, песни и пляски. Николай Корольков был большим поклонником русской культуры а именно народных песен. За свою жизнь создал около 25 хоров. В марте 1951 коллектив выступил в Москве и его слава разлетелась по всей стране.
В истории математики традиционно выделяются несколько этапов развития математических знаний:
Формирование понятия геометрической фигуры и числа как идеализации реальных объектов и множеств однородных объектов. Появление счёта и измерения, которые позволили сравнивать различные числа, длины, площади и объёмы.Изобретение арифметических операций. Накопление эмпирическим путём (методом проб и ошибок) знаний о свойствах арифметических действий, о измерения площадей и объёмов простых фигур и тел. В этом направлении далеко продвинулись шумеро-вавилонские, китайские и индийские математики древности.Появление в древней Греции дедуктивной математической системы, показавшей, как получать новые математические истины на основе уже имеющихся. Венцом достижений древнегреческой математики стали «Начала» Евклида, игравшие роль стандарта математической строгости в течение двух тысячелетий.Математики стран ислама не только сохранили античные достижения, но и смогли осуществить их синтез с открытиями индийских математиков, которые в теории чисел продвинулись дальше греков.В XVI—XVIII веках возрождается и уходит далеко вперёд европейская математика. Её концептуальной основой в этот период являлась уверенность в том, что математические модели являются своего рода идеальным скелетом Вселенной[1], и поэтому открытие математических истин является одновременно открытием новых свойств реального мира. Главным успехом на этом пути стала разработка математических моделей зависимости переменных величин (функция) и общая теория движения (анализ бесконечно малых). Все естественные науки были перестроены на базе новооткрытых математических моделей, и это привело к колоссальному их прогрессу.В XIX—XX веках становится понятно, что взаимоотношение математики и реальности далеко не столь просто, как ранее казалось. Не существует общепризнанного ответа на своего рода «основной вопрос философии математики»[2]: найти причину «непостижимой эффективности математики в естественных науках»[3]. В этом, и не только в этом, отношении математики разделились на множество дискутирующих школ. Наметилось несколько опасных тенденций[4]: чрезмерно узкая специализация, изоляция от практических задач и др. В то же время мощь математики и её престиж, поддержанный эффективностью применения, высоки как никогда прежде.Помимо большого исторического интереса, анализ эволюции математики представляет огромную важность для развития философии и методологии математики. Нередко знание истории и прогрессу конкретных математических дисциплин; например, древняя китайская задача (теорема) об остатках сформировала целый раздел теории чисел.
Создан в 1945 в городе Новосибирск перед Великой Победой в Великой Отечественной войне. Первое название Ансамбль Сибирской песни и пляски. Основатель- Николай Корольков.
В 1994 получил звание - академический
Изначально коллектив был небольшой и составлял всего 18 человек. первое выступление было конечно в мае 1945 на День Победы. Главной задачей коллектива было - нести культуру Сибири ее духовность, традиции, песни и пляски.
Николай Корольков был большим поклонником русской культуры а именно народных песен. За свою жизнь создал около 25 хоров.
В марте 1951 коллектив выступил в Москве и его слава разлетелась по всей стране.