Сходство двух проектов заключалось в сохранении монархии, введении федеративного устройства и создании двухпалатного представительного органа, избираемого на основе имущественного ценза. Но по сравнению с проектом Вяземского права представительного органа были расширены, а монарха — ограничены. .В отличие от Южного общества, где тон задавали опальные гвардейцы, Общество славян сложилось в среде провинциального офицерства. Члены этого общества мечтали о создании федерации свободных славянских государств.
Наявність у китайських математиків високоразработанной техніки обчислень і інтересу до загальних алгебраїчним методам виявляє вже В«Математика в дев'яти книгахВ» складена за більш раннім джерелам у 2-1 ст. до н.е. У цьому творі, що поклала початок прогресу математики в Китаї аж до 14 століття, описуються, зокрема вилучення квадратних і кубічних коренів з цілих чисел. Велике число завдань вирішується так, що їх можна зрозуміти тільки як приклади, що служили для роз'яснення виразно прийнятої схеми виключення невідомих в системах лінійних рівнянь. У зв'язку з календарними розрахунками в Китаї виник інтерес до завдань такого типу: при діленні числа 3 залишок є 2, при діленні на 5 залишок є 3, а при діленні на 7 залишок є 2, яке про число? Сунь-цзи (3в.) і більш повно Цзінь Цзюшао (13в.) дають викладене на прикладах опис регулярного алгоритму для вирішення таких завдань. Прикладом високого розвитку обчислювальних методів у геометрії може служити результат Цзу Чунжі (2-я половина 5 століття), який, обчислюючи площі деяких вписаних у коло і описаних багатокутників, показав, що відношення ПЂ довжини кола до діаметру лежить в межах
Наявність у китайських математиків високоразработанной техніки обчислень і інтересу до загальних алгебраїчним методам виявляє вже В«Математика в дев'яти книгахВ» складена за більш раннім джерелам у 2-1 ст. до н.е. У цьому творі, що поклала початок прогресу математики в Китаї аж до 14 століття, описуються, зокрема вилучення квадратних і кубічних коренів з цілих чисел. Велике число завдань вирішується так, що їх можна зрозуміти тільки як приклади, що служили для роз'яснення виразно прийнятої схеми виключення невідомих в системах лінійних рівнянь. У зв'язку з календарними розрахунками в Китаї виник інтерес до завдань такого типу: при діленні числа 3 залишок є 2, при діленні на 5 залишок є 3, а при діленні на 7 залишок є 2, яке про число? Сунь-цзи (3в.) і більш повно Цзінь Цзюшао (13в.) дають викладене на прикладах опис регулярного алгоритму для вирішення таких завдань. Прикладом високого розвитку обчислювальних методів у геометрії може служити результат Цзу Чунжі (2-я половина 5 століття), який, обчислюючи площі деяких вписаних у коло і описаних багатокутників, показав, що відношення ПЂ довжини кола до діаметру лежить в межах