Оксид калия реагирует 1)Только с основными оксидами 2)Только с кислотными оксидами 3)Как с кислотными, так и с основными оксидами 4)Как с кислотными, так и с амфотерными оксидами Уровнения: (свои примеры веществ)
А .Бута́н (C4H10) — органическое соединение, углеводород класса алканов. В химии название используется в основном для обозначения н-бутана. Такое же название имеет смесь н-бутана и его изомера изобутана CH(CH3)3. Название происходит от корня «бут-» (французское название масляной кислоты — acide butyrique, от др.-греч. βούτῡρον, масло) и суффикса «-ан» (принадлежность к алканам). Вдыхание бутана вызывает дисфункцию лёгочно-дыхательного аппарата.
Б.Химическая формула: C₈H₁₈ это кратко написала без объяснения.
А .Бута́н (C4H10) — органическое соединение, углеводород класса алканов. В химии название используется в основном для обозначения н-бутана. Такое же название имеет смесь н-бутана и его изомера изобутана CH(CH3)3. Название происходит от корня «бут-» (французское название масляной кислоты — acide butyrique, от др.-греч. βούτῡρον, масло) и суффикса «-ан» (принадлежность к алканам). Вдыхание бутана вызывает дисфункцию лёгочно-дыхательного аппарата.
Б.Химическая формула: C₈H₁₈ это кратко написала без объяснения.
В.Хим. формулаC12H26
Объяснение:
Связь между энергией активации ТАК и энтальпией активации.
Пересчет по уравнению Киркгоффа.
Энергия активации ТАК относится к реакции превращения реагентов в
активированный комплекс при абсолютном нуле температуры. При этой температуре
изменения энтальпии и внутренней энергии равны
0 0
0 0 ; 0 H UE T ТАК K
T
R
R
(1)
Энтальпия активации относится к той же самой реакции, но при более высокой
температуре Т. Пересчитаем энтальпию от температуры Т=0 К к температуре Т с
закона Кирхгоффа. Будем считать, что все участники реакции – идеальные газы,
тогда
0
0 0
0
T T
T ТАК p ТАК V
T
ТАК V
Н E c dT E c R d
E c dT RT
(2)
p
с равна разности теплоемкостей продуктов и реагентов. Для каждой теплоемкости
выполняется равенство
p V с c (3)
Активированный комплекс образуется из двух частиц-реагентов, поэтому
p V с c (4)
Соотношение (4) использовано в (2).
Допустим теперь, что для поступательных и вращательных степеней свободы
активированного комплекса и реагентов выполняется закон равнораспределения, т.е.
каждой степени свободы соответствует теплоемкость при любой температуре
1
2 Vс R
Теплоемкости, соответствующие колебательным степеням свободы, будем считать
близкими к нулю и не будем их учитывать в расчете. Тогда появляется возможность
рассчитать интеграл в формуле (2). Допустим, что активированный комплекс
и оба реагента – нелинейные частицы. Тогда у каждой будет по три поступательных и три
вращательных степени свободы. Получаем