Конверты могут быть одинаковыми и разными. Письма могут быть одинаковыми или разными. В каждом конверте может оказаться только по одному или по множеству писем.
Итого имеем 2*2*2 = 8 возможных толкований этой задачи. Первая подзадача по определению количества толкований решена ))
Начнем со случаев когда в каждом конверте должно оказаться только по одному письму.
В случае когда и конверты и письма одинаковы - 1 возможный вариант. По одному одинаковому письму в одинаковых конвертах.
Когда конверты разные , а письма одинаковые , и наоборот конверты одинаковые , а письма разные - также один возможный вариант. Случаи одного разного письма в одинаковых конвертах и одинакового письма в разных конвертах неотличимы.
Случай разных писем в разных конвертах - классическая задача на перестановки
ответ
Р(3) = 3! = 6 возможных вариантов.
Теперь разберемся со случаями когда в одном конверте может быть несколько писем.
При одинаковых письмах в одинаковых конвертах
1 - 1 - 1
2 - 1 - 0
3 - 0 - 0
три возможных варианта.
Случай разных писем в одинаковых конвертах.
1 - 1 - 1
0 - 1 - 2 3 варианта в зависимости от того какое письмо одно.
0 - 0 -3
Всего 5 вариантов.
Случай одинаковых писем в разных конвертах.
1 - 1 - 1
0 - 1 - 2
0 - 2 - 1
1 - 0 - 2
1 - 2 - 0
2 - 0 - 1
2 - 1 - 0
0 - 0 - 3
0 - 3 - 0
3 - 0 - 0
десять возможных вариантов.
Ну и наконец случай разных конвертов и разных писем даёт нам
1 - 1 - 1 - 6 вариантов
0 - 1 - 2 - 3 варианта
0 - 2 - 1 - 3 варианта
1 - 0 - 2 - 3 варианта
1 - 2 - 0 - 3 варианта
2 - 0 - 1 - 3 варианта
2 - 1 - 0 - 3 варианта
0 - 0 - 3 - 1вариант
0 - 3 - 0 - 1вариант
3 - 0 - 0 - 1вариант
Итого - можно и сразу , но расписано для понимания 3^3 = 27 вариантов.
Полный ответ на такую на первый взгляд простую задачу должен включать все возможные варианты, а то вдруг у Вас на экзамене по терверу такой вот преподаватель попадется )))
P.S. Когда уже решение было опубликовано - пришло мне замечание от благодарных студентов ( ну или от их приунывших преподавателей ).
- Один ты что ли такой вредный?
- А где варианты с двумя одинаковыми конвертами и письмами и одним разным?
Приходится исправляться !
Когда по одному письму в конверте.
Случай (2 одинаковых конверта, одно отличное ) и ( 2 одинаковых письма одно отличное)
K1 K1 K2
П1 П1 П2
П2 П1 П1
2 варианта
Случай (2 одинаковых конверта, одно отличное ) и ( 3 различных письма)
K1 K1 K2
П1 П2 П3
П1 П3 П2
П3 П2 П1
3 варианта
Случай (3 различных конверта ) и ( 2 одинаковых письма одно отличное)
Конверты могут быть одинаковыми и разными. Письма могут быть одинаковыми или разными. В каждом конверте может оказаться только по одному или по множеству писем.
Итого имеем 2*2*2 = 8 возможных толкований этой задачи. Первая подзадача по определению количества толкований решена ))
Начнем со случаев когда в каждом конверте должно оказаться только по одному письму.
В случае когда и конверты и письма одинаковы - 1 возможный вариант. По одному одинаковому письму в одинаковых конвертах.
Когда конверты разные , а письма одинаковые , и наоборот конверты одинаковые , а письма разные - также один возможный вариант. Случаи одного разного письма в одинаковых конвертах и одинакового письма в разных конвертах неотличимы.
Случай разных писем в разных конвертах - классическая задача на перестановки
ответ
Р(3) = 3! = 6 возможных вариантов.
Теперь разберемся со случаями когда в одном конверте может быть несколько писем.
При одинаковых письмах в одинаковых конвертах
1 - 1 - 1
2 - 1 - 0
3 - 0 - 0
три возможных варианта.
Случай разных писем в одинаковых конвертах.
1 - 1 - 1
0 - 1 - 2 3 варианта в зависимости от того какое письмо одно.
0 - 0 -3
Всего 5 вариантов.
Случай одинаковых писем в разных конвертах.
1 - 1 - 1
0 - 1 - 2
0 - 2 - 1
1 - 0 - 2
1 - 2 - 0
2 - 0 - 1
2 - 1 - 0
0 - 0 - 3
0 - 3 - 0
3 - 0 - 0
десять возможных вариантов.
Ну и наконец случай разных конвертов и разных писем даёт нам
1 - 1 - 1 - 6 вариантов
0 - 1 - 2 - 3 варианта
0 - 2 - 1 - 3 варианта
1 - 0 - 2 - 3 варианта
1 - 2 - 0 - 3 варианта
2 - 0 - 1 - 3 варианта
2 - 1 - 0 - 3 варианта
0 - 0 - 3 - 1вариант
0 - 3 - 0 - 1вариант
3 - 0 - 0 - 1вариант
Итого - можно и сразу , но расписано для понимания 3^3 = 27 вариантов.
Полный ответ на такую на первый взгляд простую задачу должен включать все возможные варианты, а то вдруг у Вас на экзамене по терверу такой вот преподаватель попадется )))
P.S. Когда уже решение было опубликовано - пришло мне замечание от благодарных студентов ( ну или от их приунывших преподавателей ).
- Один ты что ли такой вредный?
- А где варианты с двумя одинаковыми конвертами и письмами и одним разным?
Приходится исправляться !
Когда по одному письму в конверте.
Случай (2 одинаковых конверта, одно отличное ) и ( 2 одинаковых письма одно отличное)
K1 K1 K2
П1 П1 П2
П2 П1 П1
2 варианта
Случай (2 одинаковых конверта, одно отличное ) и ( 3 различных письма)
K1 K1 K2
П1 П2 П3
П1 П3 П2
П3 П2 П1
3 варианта
Случай (3 различных конверта ) и ( 2 одинаковых письма одно отличное)
K1 K2 K3
П1 П1 П2
П2 П1 П1
П1 П2 П1
3 варианта
Когда по множеству писем в конверте.
Случай писем (2+1) в одинаковых конвертах.
П1-П1-П2
П1П1-П2-0
П1П2-П1-0
П1П1П3-0-0
Всего 4 варианта.
Случай одинаковых писем в (2+1) конвертах.
K1 K1 K2
1 - 1 - 1
0 - 1 - 2
0 - 2 - 1
1 - 2 - 0
0 - 0 - 3
3 - 0 - 0
шесть возможных вариантов.
Случай (2+1) писем в (2+1) конвертах
K1 K1 K2
П1-П1-П2
П1-П2-П1
0-П1-П1П2
0-П2-П1П1
0-П1П1-П2
0-П1П2-П1
П1-П1П2-0
П2-П1П1-0
0-0-П1П1П2
П1П1П2-0-0
Десять возможных вариантов.
Случай разных писем в (2+1) конвертах
K1 K1 K2
П1-П2-П3
П1-П3-П2
П2-П3-П1
0-П1-П2П3
0-П2-П1П3
0-П3-П1П2
0-П1П2-П3
0-П1П3-П2
0-П2П3-П1
П1-П2П3-0
П2-П1П3-0
П3-П1П2-0
0-0-П1П2П3
П1П2П3-0-0
14 вариантов
Случай (2+1) писем в разных конвертах
К1 К2 К3
П1-П1-П2
П2-П1-П1
П1-П2-П1
0 -П1-П1П2
0-П2-П1П1
0-П1П1-П2
0-П1П2-П1
П1-0-П1П2
П2-0-П1П1
П1-П12-0
П2-П1П1-0
П1П1-0-П2
П1П2-0-П1
П1П1-П2-0
П1П2-П1-0
П1П1П2-0-0
0-П1П1П2-0
0-0-П1П1П2
18 вариантов.
Объяснение:
Объяснение:
Уравнивание методом электронного баланса окислительно – восстановительных реакций.
Закончить уравнения реакций и расставить коэффициенты методом электронного баланса
1) Zn + H2SO4(p) = ZnSO4 + H2↑
Zn(0) - 2e = Zn(+2) окисление, Zn - восстановитель║1
2H(+) + 2e = H2(0) восстановление, 2H(+) - окислитель║1
2) S +Zn = ZnS
S(0) +2e = S(-2) восстановление, 2H(+) - окислитель║1
Zn(0) - 2e = Zn(+2) окисление, Zn - восстановитель║1
3) S + H2 →
S(0) +2e = S(-2) восстановление, 2H(+) - окислитель║1
H2(0) - 2e = 2H+ окисление, H2 - восстановитель║1
4) 2Na + 2H2O = 2NaOH + H2↑
Na(0) - 1e = Na+ окисление, Na - восстановитель║2
2Н(+) + 2е = Н2(0) восстановление 2Н(+) - окислитель║1
5) 2Na + Cl2 = 2NaCl
Na(0) - 1e = Na+ окисление, Na - восстановитель║2
Cl2(0) +2e = 2Cl(-) восстановление, Cl2 - окислитель║1
6)6Li + N2 = 6LiN2
N2 + 6e = 2N(-3) восстановление, N2 - окислитель║1
Li(0) - 1e = Li(+1) окисление, Li(0) - восстановитель ║ 6
7) N2 + Mg = Mg3N3
N2 + 6e = 2N(-3) восстановление, N2 - окислитель║1
Mg(0) - 2e = Mg(+2) окисление, Mg- восстановитель║1
8) 4Al + 3O2 = 2Al2O3
Al(0) - 3e = Al(+3)окисление, Al- восстановитель║ 4
O2(0) + 4e = 2O(-2) восстановление О2 - окислитель║3
9) 3Cu + 8HNO3(p) → 3Cu(NO3)2 + 2NO + 4H2O
Cu(0) - 2е = Cu(+2) окисление, Cu восстановитель║3
N(+5) +3e =N(+2) восстановление HNO3 окислитель ║2
10) 4Ca +10 HNO3(p) = 4 Ca(NO3)2 + NH4NO3 + 3H2O
Са(0) +2е = Са(+2) окисление, Са восстановитель ║4
N(+5) +8 = N(-3) восстановление НNO3 -окислитель ║1
11) 4NH3 +5 O2 → 4NO + 6H2O
N(-3) -5e = N(+2) окисление NH3 - восстановитель ║ 4
О2(0) +4е = 2О(-2) восстановление О2 - окислитель║5
12) 4NH3 + 3O2 →2 N2 + 6H2O
N(-3) -6e = N2(0) окисление NH3 - восстановитель ║ 2
О2(0) +4е = 2О(-2) восстановление О2 - окислитель║3
Объяснение: