В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Kseniya1521
Kseniya1521
28.06.2020 13:24 •  Химия

Спам отмечу нарушение ​


Спам отмечу нарушение ​

Показать ответ
Ответ:
lianochkaya14
lianochkaya14
07.09.2022 23:49

А)

Элемент   Ar       e⁻       p⁺       n°      Z    

I                  127     53     53       74    +53

Na               23      11       11       12      +11

CI               35        17      17      18      +17

CI                37        17      17      20    +17

Ca              40        20     20     20    +20

AI               27         13      13      14      +13

Б)

Элемент   Ar       e⁻       p⁺       n°      Z

S              32        16      16       16     +16

P              31         15      15       16     +15

C              12          6       6        6     +6

K              39         19      19      20    +19

Ne           20          10      10     10    +10

В)

Элемент   Ar       e⁻       p⁺       n°      Z

F                19       9         9        10    +9

O               16       8         8         8     +8

B               11        5          5         6     +5

Ba            137     56       56        81     +56  

Si              28      14        14        14      +14

Г)

Элемент   Ar       e⁻       p⁺       n°      Z

H                1          1         1          0     +1  

N               14         7        7          7     +7

Zn             65        30    30       35   +30  

Kr              84        36    36       48   +36  

As             75         33    33       42   +33

0,0(0 оценок)
Ответ:
lyutaevayulya
lyutaevayulya
26.12.2022 05:27

изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,

d 2S < 0).

Неравенство (4.1) называют неравенством Клаузиуса. Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

, (4.3)

где знак равенства ставится, если весь цикл полностью обратим.

Энтропию можно определить с двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:

, (4.4)

где k = 1.38 10-23 Дж/К - постоянная Больцмана (k = R / NA), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана.

С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:

, (4.5)

где G (E) - фазовый объем, занятый микроканоническим ансамблем с энергией E.

Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:

. (4.6)

Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:

Qобр = TdS, (4.7)

где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.

Расчет изменения энтропии для различных процессов

Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

(4.8)

Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

1) Нагревание или охлаждение при постоянном давлении.

Количество теплоты, необходимое для изменения температуры системы, выражают с теплоемкости: Qобр = Cp dT.

(4.9)

Если теплоемкость не зависит от температуры в интервале от T1 до T2, то уравнение (4.8) можно проинтегрировать:

. (4.10)

Если изменение температуры происходит при постоянном объеме, то в формулах (4.9) и (4.10) Cp надо заменить на CV.

2) Изотермическое расширение или сжатие.

Для расчета энтропии в этом случае надо знать уравнение состояния системы. Расчет основан на использовании соотношения Максвелла:

(4.11)

В частности, для изотермического расширения идеального газа (p = nRT

Объяснение:

как так сделал

0,0(0 оценок)
Популярные вопросы: Химия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота