В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
romanbeletsky2
romanbeletsky2
04.12.2020 02:28 •  Литература

Задание «Лови ошибку!» - Действие сказки разворачивается в
деревне Башмачки.
- В деревне считали, что конь принадлежал
Панкрату, и кормить его должен только он.
- Панкрат рассказал Фильке историю про
злого мужика и солдата.
- В сенях у бабки жила сорока. Она
не спала от холода, сидела на хомуте,
подслушивала.
- Я, дедушка Панкрат, как высплюсь,
завтра соберу ребят.
- Филька разломил буханку, посолил хлеб и
протянул коню. Конь сразу взял хлеб.
- Сорока сидела на раките и сердито
трещала. И все её слушали.
сказка Тёплый хлеб помечу как лучший ответ​

Показать ответ
Ответ:
Anna18301
Anna18301
27.04.2023 11:41

1.Рассказ Ивана Бунина "Лапти" вызывает целую вереницу сильных и сложных чувств. Прежде всего, это печаль о судьбе замерзшего Нефёда, сострадание к больному ребенку и его несчастной матери, которая больше всего хочет своему малышу, но ничем не может, и пребывает в отчаянии.

2.Мальчик болел. У него была высокая температура. И из-за этого он БРЕДЕЛ. И он просил красные лапти.

3.Нефед не мог не понимать, что рискует жизнью, отправляясь за фантастическими красными лаптями. Ведь это была настоящая бредовая идея, больной ребенок сам не понимал, что ему нужно. Но Нефед решил, что раз душа просит, надо добывать красные лапти, и даже придумал, как обыкновенные лапти сделать красными. Нефед без лишних слов отправляется в ночь, в пургу, без дороги за шесть верст за лаптями. Он пожертвовал своей жизнью ради чужого ребенка, добыл лапти и фуксин для их покраски, вот только дойти живым не сумел, замерз по дороге. Он погиб, но его такой самоотверженный, но, казалось бы, неразумный поход жизни еще нескольким людям. Заплутавшие в ночи мужики уже отчаялись выбраться из снежного моря, но вдруг наткнулись на мертвого уже Нефеда и поняли, что жилье близко. Готовность к самопожертвованию, решительность, находчивость, сострадание, скромность Нефеда вызывают уважение и восхищение

Объяснение:

.

0,0(0 оценок)
Ответ:
wedh2011
wedh2011
28.12.2021 02:19

Объяснение:

Авторы: Д. А. Баюк; П. П. Гайденко (философские взгляды)

НЬЮ́ТОН (Newton) Иса­ак (25.12.1642, Вул­сторп – 20.3.1727, Кен­синг­тон, ны­не ра­й­он Лон­до­на), сэр, англ. ма­те­ма­тик, ме­ха­ник, оп­тик, фи­ло­соф, гос. дея­тель; чл. (1672) и пре­зи­дент (1703) Лон­дон­ско­го ко­ро­лев­ско­го об-ва (ЛКО), чл. Па­риж­ской АН (1699), пэр Анг­лии (1705). Один из соз­да­те­лей ма­те­ма­тич. ана­ли­за, от­крыв­ше­го но­вую эпо­ху в ко­ли­че­ст­вен­ном опи­са­нии при­род­ных яв­ле­ний. Раз­ра­бо­тал ос­но­вы клас­сич. ме­ха­ни­ки, фи­зич. оп­ти­ки.

Работы в области математики

Ма­те­ма­ти­ка для Н. бы­ла гл. ин­стру­мен­том в фи­зич. изы­ска­ни­ях; он счи­тал, что по­ня­тия ма­те­ма­ти­ки воз­ни­ка­ют как аб­страк­ции яв­ле­ний и про­цес­сов ре­аль­но­го ми­ра. Раз­ра­бот­ка Н. диф­фе­рен­ци­аль­но­го и ин­те­граль­но­го ис­чис­ле­ний яви­лась важ­ней­шим эта­пом раз­ви­тия ма­те­ма­ти­ки. Осн. идеи флюк­сий ис­чис­ле­ния сло­жи­лись у Н. в 1665–66 под влия­ни­ем его пред­ше­ст­вен­ни­ков и со­вре­мен­ни­ков.

В ис­ход­ных по­ня­ти­ях и тер­ми­но­ло­гии ме­то­да флюк­сий от­ра­зи­лось влия­ние идей, раз­ви­тых ря­дом учё­ных 17 в. – Б. Ка­валь­е­ри, П. Фер­ма, Дж. Вал­ли­сом; в этих по­ня­ти­ях от­чёт­ли­во про­яви­лась связь ме­ж­ду ма­те­ма­тич. и ме­ха­нич. ис­сле­до­ва­ния­ми. По­ня­тие не­пре­рыв­ной ма­те­ма­тич. ве­ли­чи­ны Н. ввёл как аб­ст­рак­цию от разл. ви­дов не­пре­рыв­но­го ме­ха­нич. дви­же­ния. Ли­нии мож­но по­лу­чать дви­же­ни­ем то­чек, по­верх­но­сти – дви­же­ни­ем ли­ний, те­ла – дви­же­ни­ем по­верх­но­стей, уг­лы – вра­ще­ни­ем сто­рон, и т. д. Не­пре­рыв­ные пе­ре­мен­ные ве­ли­чи­ны Н. на­звал флю­ен­та­ми (те­ку­щи­ми ве­ли­чи­на­ми, от лат. fluo – течь). Об­щим ар­гу­мен­том разл. те­ку­щих ве­ли­чин – флю­ент – у Н. яв­ля­ет­ся «вре­мя», по­ни­мае­мое фор­маль­но как не­кая от­вле­чён­ная рав­но­мер­но те­ку­щая ве­ли­чи­на, к ко­то­рой от­не­се­ны про­чие за­ви­си­мые пе­ре­мен­ные. Флю­ен­та – из­ме­няю­щая­ся со вре­ме­нем ве­ли­чи­на, из­ме­не­ние ко­то­рой мож­но изо­бра­зить ли­ни­ей в де­кар­то­вых ко­ор­ди­натах. Ско­ро­сти из­ме­не­ния флю­ент Н. на­звал флюк­сия­ми, а не­об­хо­ди­мые для вы­чис­ле­ния флюк­сий бес­ко­неч­но ма­лые из­ме­не­ния флю­ент – мо­мен­та­ми (у Г. В. Лейб­ни­ца, ко­то­рый дос­тиг в диф­фе­рен­ци­аль­ном и ин­те­граль­ном ис­чис­ле­ни­ях при­мер­но тех же ре­зуль­та­тов, что и Н., поч­ти од­но­вре­мен­но и не­за­ви­си­мо от не­го, они на­зы­ва­ют­ся диф­фе­рен­циа­ла­ми). Н. вы­чис­лил (1669, опубл. в 1711) про­из­вод­ную и ин­те­грал лю­бой сте­пен­ной функ­ции. Разл. ра­цио­наль­ные, в т. ч. дроб­но-ра­цио­наль­ные функ­ции, функ­ции, со­дер­жа­щие ра­ди­ка­лы, и не­ко­то­рые транс­цен­дент­ные функ­ции (ло­га­риф­ми­че­скую, по­ка­за­тель­ную, си­нус, ко­си­нус, арк­си­нус) Н. вы­ра­жал с по­мо­щью бес­ко­неч­ных сте­пен­ных ря­дов. Ме­тод вы­чис­ле­ния и изу­че­ния функ­ций с по­мо­щью ря­дов при­об­рёл ог­ром­ное зна­че­ние для все­го ма­те­ма­тич. ана­ли­за и его при­ло­же­ний.В кон. 1660-х гг. Н. сфор­му­ли­ровал две осн. вза­им­но об­рат­ные за­да­чи ма­те­ма­тич. ана­ли­за: 1) оп­ре­де­ле­ние ско­ро­сти дви­же­ния в дан­ный мо­мент вре­ме­ни по из­вест­но­му прой­ден­но­му пу­ти (за­да­ча диф­фе­рен­ци­ро­ва­ния), или оп­ре­де­ле­ние со­от­но­ше­ния ме­ж­ду флюк­сия­ми по дан­но­му со­от­но­ше­нию ме­ж­ду флю­ен­та­ми; 2) оп­ре­де­ле­ние прой­ден­но­го за дан­ное вре­мя пу­ти по из­вест­ной ско­ро­сти дви­же­ния (за­да­ча ин­тег­ри­ро­ва­ния диф­фе­рен­ци­аль­но­го урав­не­ния, в ча­ст­но­сти оты­ска­ния пер­во­об­раз­ной), или оп­ре­де­ле­ние со­от­но­ше­ния ме­ж­ду флю­ен­та­ми по дан­но­му со­от­но­ше­нию ме­ж­ду флюк­сия­ми. Ме­тод флюк­сий при­ме­нял­ся Н. к боль­шо­му чис­лу гео­мет­рич. во­про­сов (за­да­чи на ка­са­тель­ные, кри­виз­ны, экс­тре­му­мы, квад­ра­ту­ры, спрям­ле­ния). Н. на­ме­тил, по су­ще­ст­ву, про­грам­му по­строе­ния ме­то­да флюк­сий на ос­но­ве по­ня­тий о «по­след­них от­но­ше­ни­ях ис­че­заю­щих ве­ли­чин» или «пер­вых от­но­ше­ни­ях за­ро­ж­даю­щих­ся ве­ли­чин», не да­вая их фор­маль­но­го оп­ре­де­ле­ния и рас­смат­ри­вая их как ин­туи­тив­но оче­вид­ные. Они на­шли своё стро­гое обос­но­ва­ние в по­ня­тии пре­де­ла, раз­ви­том ма­те­ма­ти­ка­ми 2-й пол. 18 и 19 вв. (Ж. Д’Аламбер, Л. Эй­лер, О. Ко­ши и др.).

В кон. 1660-х гг. бы­ли на­пи­са­ны и др. со­чине­ния Н. по ма­те­ма­тич. ана­ли­зу, из­дан­ные зна­чи­тель­но позд­нее. Был раз­ра­бо­тан ме­тод вы­чи­сле­ния кор­ней урав­не­ния (Нью­то­на ме­тод) и один из без­ус­лов­ной ми­ни­ми­за­ции ме­то­дов. Не­ко­то­рые ма­те­ма­тич. от­кры­тия Н. по­лу­чи­ли из­вест­ность в 1670-х гг. по его ру­ко­пи­сям и пе­ре­пис­ке. Боль­шое зна­че­ние име­ли так­же его ра­бо­ты по ал­геб­ре, гео­мет­рии и ин­тер­по­ля­ции. При ре­ше­нии мн. ма­те­ма­тич. за­дач ис­поль­зу­ет­ся Нью­то­на би­ном.

0,0(0 оценок)
Популярные вопросы: Литература
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота