Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках.
"Опасные" точки сразу видны, это: 1) - знаменатель обращается в 0. 2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов: (при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак: 1) →+∞ предел равен 2) →-∞ предел равен
3) →0 предел равен:
4) → По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).
1) На заполнение бассейна двумя трубами потребуется 15 часов.
2) Через 3 часа останется незаполненным объем бассейна равный 660 м³.
Решение.
1) Скорость 1 трубы = 30 м³/ч.
Скорость 2 трубы = 25 м³/ч.
Тогда две трубы, работая одновременно, будут заполнять бассейн с суммарной скоростью 30 м³/ч + 25 м³/ч = 55 м³/ч.
Чтобы наполнить бассейн двумя трубами, потребуется времени 825 м³ / 55 м³/ч = 15 часов.
2. Так как суммарная скорость заполнения бассейна двумя трубами = 55 м³/ч, то за время 3 часа в бассейн будет налито 3 ч * 55 м³/ч = 165 м³ воды.
Незаполненный объем бассейна составит: 825 м³ - 165 м³ = 660 м³.
"Опасные" точки сразу видны, это:
1) - знаменатель обращается в 0.
2) - по обычаю проверяется эта точка.
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
(при →∞)
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
(при →∞)
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
(при →∞)
Итак:
1) →+∞ предел равен
2) →-∞ предел равен
3) →0 предел равен:
4) →
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - мы получаем отрицательное основание).
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).