Пусть ему Х лет.
Тогда его годы через 3 года будут Х+3
А трижды 3*(Х+3)
Трижды его годы три года назад соответственно 3*(Х-3)
Теперь если мы от первых ТРИЖДЫ отнимем вторые ТРИЖДЫ получим как раз его годы, т.е. Х
Составляем ур-е: 3*(Х+3) - 3*(Х-3)=Х откроем скобки в левой части, учитывая знаки
3Х+9-3Х+9=Х
18=Х
Ему 18 лет.
Пошаговое объяснение:
. Найдем первую производную функции:
у' = (х^3 - 27х^2 + 15)' = 3х^2 - 54х.
2. Приравняем эту производную к нулю и найдем нули функции:
3х^2 - 54х = 0;
х * (3х - 54) = 0;
х = 0;
3х - 54 = 0;
3х = 54;
х = 54 : 3;
х = 18.
3. Найдем значение производной, на отрезках (-∞ 0]; (0; 18]; (18; +∞):
у'(-1) = 3 * (-1)^2 - 54 * (-1) = 3 + 54 = 57 > 0;
у'(1) = 3 * 1^2 - 54 * 1 = 3 - 54 = -51 < 0;
у(19) = 3 * 19^2 - 54 * 19 = 1083 - 1026 = 57 > 0.
Производная при прохождении точки х = 18, меняет свой знак с минуса на плюс, это и будет точка минимума.
ответ: точка минимума х = 18.
Пусть ему Х лет.
Тогда его годы через 3 года будут Х+3
А трижды 3*(Х+3)
Трижды его годы три года назад соответственно 3*(Х-3)
Теперь если мы от первых ТРИЖДЫ отнимем вторые ТРИЖДЫ получим как раз его годы, т.е. Х
Составляем ур-е: 3*(Х+3) - 3*(Х-3)=Х откроем скобки в левой части, учитывая знаки
3Х+9-3Х+9=Х
18=Х
Ему 18 лет.
Пошаговое объяснение:
. Найдем первую производную функции:
у' = (х^3 - 27х^2 + 15)' = 3х^2 - 54х.
2. Приравняем эту производную к нулю и найдем нули функции:
3х^2 - 54х = 0;
х * (3х - 54) = 0;
х = 0;
3х - 54 = 0;
3х = 54;
х = 54 : 3;
х = 18.
3. Найдем значение производной, на отрезках (-∞ 0]; (0; 18]; (18; +∞):
у'(-1) = 3 * (-1)^2 - 54 * (-1) = 3 + 54 = 57 > 0;
у'(1) = 3 * 1^2 - 54 * 1 = 3 - 54 = -51 < 0;
у(19) = 3 * 19^2 - 54 * 19 = 1083 - 1026 = 57 > 0.
Производная при прохождении точки х = 18, меняет свой знак с минуса на плюс, это и будет точка минимума.
ответ: точка минимума х = 18.