1 2. Довести, що функція є парною:
fr) - 3 + 5:
3. Знайти значення функції:
f(x) =
х в точках 0; -1; 0,2;
x - 1
4. Знайти область визначення функції, заданої формулою:
1) f (x) = 5х – 17 ;
х+ 7
2) f (x) =
х2 - 2х - 8
5. Обчислити: 1) 3 4/16 - 3/8 - 125 ; 2) 64 і 1,2) -1 . 36
5
4
6. Подати вираз у вигляді степеня:
х
..)
7 – х = 1.
л
л
5)
7. Розв'язати рівняння: 1) 2x – 5 = 3; 2) х + 6
х .
8.Знайти найменший додатнiй період функції:
1) y = 2sin
;
2) y= ctg| 2x
4. 2
7
9.Винести множник з-під знака кореня: А/80 x*у.
10.Розв'язати рівняння:
1) sin2x - cosx = 0; 2) 12 - x = x;3).: 3* = 27;
434x 926-1 81*-1
11. Розв'язати нерівність: 1) 9* < 27; 2) sin 2x >
3
2
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
Пошаговое объяснение:
Точка на комплексной плоскости изображает число
- действительная часть числа (Real)
- мнимая часть числа (Imaginary)
В соответствии с этим строим точки для 16.1. (Картинка 1)
Комплексно-сопряженные числа — пара комплексных чисел, обладающих одинаковыми действительными частями и равными по абсолютной величине противоположными по знаку мнимыми частями.
Т.е. сопряженным для числа будет являться число .
В графическом представлении это означает, что сопряженное число будет являться отражением исходного числа относительно действительной оси (оси ).
На Картинке 2 серым обозначены исходные точки и синим - комплексно-сопряженные с ними.