В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Ivan1128
Ivan1128
13.01.2022 18:04 •  Математика

1³ + 2³ + ... + n³ = (1 + 2 + ... + n)²
Доказать методом МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ. ​

Показать ответ
Ответ:
nilnazarov666
nilnazarov666
15.10.2020 16:12

Доказать утверждение 1^{3} + 2^{3} + ... + n^{3} = (1 + 2 + ... + n)^{2} методом математической индукции.


1³ + 2³ + ... + n³ = (1 + 2 + ... + n)²Доказать методом МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ. ​
0,0(0 оценок)
Ответ:
mishelmarriano
mishelmarriano
15.10.2020 16:12

В скобке правой части сумма арифметической прогрессии с разностью, равной 1 и первым членом 1, ее сумма равна (1+n)*n/2, поскольку скобка справа в квадрате, то  (1 + 2 + ... + n)²= ((1+n)*n/2)²=

(1+n)²*n²/4, значит, нужно доказать, что 1³ + 2³ + ... + n³ = (1+n)²*n²/4,

1. Берем n=1 /база/, проверяем справедливость равенства.1³=2²*1²/4=1

2. Предполагаем, что для n=к равенство выполняется.

т.е. 1³ + 2³ + ... + к³ = (1+к)²*к²/4

3. Докажем, что для n= к+1 равенство выполняется. т.е., что

1³ + 2³ + ... + (к+1)³ = (1+к)²*(2+к)²/4

(1³ + 2³ + ... к³)+ (к+1)³ =(1+к)²*к²/4+ (к+1)³=(к+1)²*(к²+4к+4)/4=(1+к)²*(2+к)²/4

Доказано.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота