1.3. На склад поступили чоботи трьох фабрик, причому чоботи першої складають 10 %, другої – 80%, третьої – 10 %. Відомо також, що процент бракованих чобіт для першої фабрики дорівнює 21%, для другої – 7%, для третьої –14 %.
1. Знайти ймовірність того, що довільно взяті чоботи будуть бракованими.
2. Знайти ймовірність того, що чоботи виготовлено на першій фабриці, якщо відомо, що довільно взяті чоботи виявилися бракованими.
3. Знайти ймовірність того, що чоботи виготовлено на другій фабриці, якщо відомо, що довільно взяті чоботи виявилися не бракованими.
1 задачи на движение.
а) скорость сближения 60+70=130/км/ч/, через 2 часа 130*2=260/км/, значит, расстояние между городами 260км
2) собственная скорость лодки равна (6+4)/2=5/км/ч/, скорость течения (6-4)/2=1/км/ч/
2. основное свойство дроби.
Дробь можно сокращать, т.е. числитель и знаменатель делить на отличное от нуля число, или умножать и числитель, и знаменатель на отличное от нуля число. Первое мы называем сокращением.
а) сократим на 11 дробь. т.е. числитель и знаменатель разделим на 11. а потом сократим на 4, получим а) 132/176=12/16=3/4
a) 13/22 и 32/55; 65/11 > 64 /110 поэтому 13/22 > 32/55
б) 11/35 > 11/60, т.к. если числители 11 равны. сравним по правилу -та больше та дробь. у которой знаменатель меньше.
3. действия с дробями.
а) 1) 2-7/8=1 1/8=9/8; 2) 1/2+1/4=2/4+1/4=3/4; 3)(3/4)²=9/16; 4) (9/16)*5=45/16; 5) (9/8):(45/16)=9*16/(8*45)=2/5=0.4
б) (2 3/4)/2=11/8; 2) 11/8+6/8=17/8; 3)(4/3)*17/8=17/6; 4)10/3-17/6=20/6-17/6=3/6=1/2=0.5
4. Задачи на части.
Чтобы найти все число по дроби, надо число разделить на дробь. это к б) замечание. А чтобы найти дробь от числа, надо число умножить на дробь. это замечание к решению а)
98-(98*5/7)=98*2/7=28/р./ осталось.
б) 140/(7/19)=140*19/7=20*19=380/р/ всего было у Вилена.
Решение простейших тригонометрических уравнений
Пример 1. Найдите корни уравнения
\[ \cos\left(4x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}, \]
принадлежащие промежутку [-\pi;\pi).
Решение. Используем вторую формулу на рисунке. Здесь и далее полагаем k,\,n\in Z (на всякий случай, эта запись означает, что числа n и k принадлежат множеству целых чисел):
\[ 4x+\frac{\pi}{4}=\pm\operatorname{arccos \left(-\frac{\sqrt{2}}{2}\right)}+2\pi k. \]
Арккосинус a есть число, заключенное в интервале от 0 до \pi, косинус которого равен a.
Арксинус a есть число, заключенное в интервале от -\pi до \pi, косинус которого равен a.
Другими словами, нам нужно подобрать такое число из промежутка [0;2\pi], косинус которого был бы равен -\frac{\sqrt{2}}{2}. Это число \frac{3\pi}{4}. Используя это, получаем:
\[ 4x+\frac{\pi}{4} = \pm\frac{3\pi}{4}+2\pi k\Leftrightarrow \left[\begin{array}{l}x = \frac{\pi}{8}+\frac{\pi k}{2}, \\ x = -\frac{\pi}{4}+\frac{\pi n}{2}.\end{array}\right. \]