(-1; 4), (-2; 1), (-3; 2), (-4; 2), (-4; 3), (-6; 4), (-6; 6), (-8; 9), (-7; 10), (-6; 10), (-6; 11), (-5; 10), (-4; 10), (-3; 9), (-1; 9,5), (1; 9), (3; 10), (4; 11), (4; 16), (3; 18), (5; 17), (6; 17), (5; 16), (6; 12), (6; 9), (4; 7), (1; 6),
(2; 5), (5; 4), (5; 3), (4; 4), (1; 2), (1; 0), (3; -4), (4; -5), (1;-7), (1; -6), (0; -4), (-2; -7), (-1,5; -8), (-5; -7), (-4; -6), (-5; -4), (-7;-5), (-7; -7), (-6,5; -8), (-10,5; -8), (-10; -7), (-10; -6), (-11; -7),
(-11; -8), (-14; -6), (-13; -5), (-12; -3), (-13; -2), (-14; -3), (-12; 1), (-10; 3), (-8; 3), (-6; 4), глаз
Итак
200 - производительность труда 1 бригады
(200-х) - второй
(200+6х) - третьей
Р - вся работа.
Далее
200+(200-х) = (400-х) -произв. труда 1 и 2 бригад вместе.
200+(200-х)+(200+6х) = (600 + 5х) - произв труда всех 3 бригад вместе.
1+2 сделали Р/6 работы, затратили на это
Р/6(400-х) - время на 1/6 работы
1+2+3 сделали 5Р/6 работы, затратив на это
5Р/6(600+5х) - время на 5/6 работы.
Общее время (Р/6)*(1/(400-х)+ 5/(600+5х)) - общее время, мин которого нужно найти.
То есть нужно найти мин функции
1/(400-х) + 5/(600+5х) = (600+5х+2000-5х)/((400-х)(600+5х))=2600/(400-х)(600+5х)
Так как числитель - положительная константа, мин функции достигается при макс знаменателя.
Итак, задача свелась к нахождению макс квадратного трехчлена
(400-х)(600+5х)
Это совсем просто, потому что он достигается при полусумме его корней.
х1=400 х2=-120, значит хмин=(400-120)/2 = 140.
Вот, в принципе и всё, потому что в задаче нужно найти ТОЛЬКО это значение.
Если есть желание, можешь найти и всё остальное.
PS. Перепроверь условие и арифметику, мне не нравится этот ответ, потому что уж очень неравнозначные производительности труда получаются, а именно
1 - 200
2 - 60
3 - 1300
Так в жизни не бывает, а может, я где-то ошибся. Бывает...
S квадрата ( Y )
X = 4Y
Y + 432 = X
Y + 432 = 4Y
3Y = 432
Y = 144
X = 4 * 144 = 576
Площадь прямоугольника 576 ( кв см ) Площадь квадрата 144 ( кв см )
Сторона квадрата = V 144 = 12 ( cm )
Периметр квадрата = 4 * 12 = 48 ( cm )
Ширина прямоугольника = 12 + 4 = 16 ( см )
Длина прямоугольника = 576 : 16 = 36 ( см )
Периметр прямоугольника = 2 х ( 16 + 36 ) = 2 х 52 = 104 ( см )
На сколько см периметр прямоугольника больше периметра квадрата?
104 - 48 = 56 ( см )
ответ на 56 см больше