1.7. Функции f(x) и g(x) определены на множестве . Пусть А = {2; 5; 7) - множество решений уравнения f(x) = 0, В = {-2; — 5; 2} – множество решений уравнения g(x) = 0. Найти множество с решений уравнения (0) = 0.
Давайте найдем первообразную F(x) (если она подразумевается). Производная от F(x) - это f(x). Первая часть неравенства меньше нуля, когда f(x)<0, => -2x+3<0 => x > (3/2)
Вторая часть сама первообразная. Давайте найдем нужную (при F(0)=4). F(x) = Где C - аддитивная константа. Решим и это неравенство. При F(0) = C, значит C = 4. Отсюда нужная F(x)= Она же меньше нуля. Решим методом интервалов. Определим, когда F(x)=0.
D= Тогда x= x= Составим интервалы. Знаки в интервалах можно определить, просто подставляя значения из них в ф-ию. (-inf;-1)<0 (-1;4)>0 (4;+inf)<0 Нам, судя по нер-вам, нужны <0, значит подходят (-inf;-1)u(4;+inf) Теперь объединим. Не указано "И" или "ИЛИ" поэтому сделаю оба варианта. Если "И" (фигурные скобки) x принадлежит (4;+inf). Если "ИЛИ" (квадратные скобки) x принадлежит (-inf;-1)u(3/2;+inf).
Производная от F(x) - это f(x). Первая часть неравенства меньше нуля, когда f(x)<0, => -2x+3<0 => x > (3/2)
Вторая часть сама первообразная. Давайте найдем нужную (при F(0)=4).
F(x) =
Где C - аддитивная константа.
Решим и это неравенство.
При F(0) = C, значит C = 4.
Отсюда нужная F(x)=
Она же меньше нуля.
Решим методом интервалов.
Определим, когда F(x)=0.
D=
Тогда
x=
x=
Составим интервалы. Знаки в интервалах можно определить, просто подставляя значения из них в ф-ию.
(-inf;-1)<0
(-1;4)>0
(4;+inf)<0
Нам, судя по нер-вам, нужны <0, значит подходят
(-inf;-1)u(4;+inf)
Теперь объединим. Не указано "И" или "ИЛИ" поэтому сделаю оба варианта.
Если "И" (фигурные скобки)
x принадлежит (4;+inf).
Если "ИЛИ" (квадратные скобки)
x принадлежит (-inf;-1)u(3/2;+inf).
inf - бесконечность.
ответ: ≈ 38 м
Пошаговое объяснение:
Найдём сколько метров пройдёт колесо за 1 оборот:
Возьмём формулу длины окружности С=2πr, где
С - длина окружности
r - радиус окружности
π ≈ 3,14
С ≈ 2 * 3,14 * 0,5 = 3,14 м - пройдёт колесо за 1 оборот
Найдём, сколько метров пройдёт колесо за 12 оборотов:
3,14 * 12 ≈ 37,68 м - пройдёт колесо за 12 оборотов
Округлим расстояние до целых:
37,68 м ≈ 38 м
1) С ≈ 2 * 3,14 * 0,5 = 3,14 м - пройдёт колесо за 1 оборот
2) 3,14 * 12 = 37,68 м - пройдёт колесо за 12 оборотов
3) 37,68 м ≈ 38 м