1) у=3+2х-x²; производная: y ' = 2-2x; 2-2x=0; x = 1; y(1)=3+2*1-1² = 4; Функция не является монотонной. Одна точка экстремума: x = 1; у=4; производная в этой точке меняет знак с + на - ; это точка максимума функции. Функция возрастающая на интервале x є (-∞;1). Функция убывающая на интервале x є (1; +∞). строим график: пересечение с осью OY: 3+2х-x²=0; x1=-1; x2=3; строим по точкам: x= -2; y= -5; x= -1; y= 0; x= 0; y= 3; x= 1; y= 4; x= 2; y= 3; x= 3; y= 0; x= 4; y= -5;
2) у=3х²-x³; производная: y ' = 6x -3x²; 6x -3x²=0; x1 = 0; x2 = 2; y(0)= 3х²-x³ = 0; y(2)= 3*2²-2³ = 4; Функция не является монотонной. Две точки экстремума: (0; 0) производная в этой точке меняет знак с - на + ; это точка локального минимума функции; и (2; 4) производная в этой точке меняет знак с + на - ; это точка локального максимума функции. Функция убывающая на интервале x є (-∞; 0) U (2; +∞). Функция возрастающая на интервале x є (0; 2). строим график: пересечение с осью OY: 3х²-x³=0; x1=0; x2=3; строим по точкам: x= -1; y= 4; x= 0; y= 0; x= 1; y= 2; x= 2; y= 4; x= 3; y= 0;
3) у=6х+x³; производная: y ' = 3x²+6; 3x²+6 = 0; Нет корней. производная всегда больше нуля. Функция является монотонной. Функция возрастающая на интервале x є (-∞; +∞). строим график: пересечение с осью OY: 6х+x³=0; x=0; строим по точкам: x= -1; y= -7; x= -0.75; y= -4.92; x= -0.5; y= -3.13; x= -0.25; y= -1.52; x= 0; y= 0; x= 0.25; y= 1.52; x= 0.5; y= 3.13; x= 0.75; y= 4.92; x= 1; y= 7;
2) KL² =NL*LM² NL =x LM=MN -NL =25 -x;
144 =x(25 -x) ;
x² -25x +144 =0;
x = 9
x=16 (по рисунку NL < LM )
ΔKLN : NK² =NL²+ LK²
NK =3*5 =15 (9 =3*3; 12=3*4; 3*5=15)..
ΔKLM : KM² =KL² +LM²
KM =4*5 =20 (12 =4*3; 16=4*4 ;4*5 =20)
3) KE² =EM*EL
EM =KE²/EL =6²/8 =9/2 =4,5
KL² =KE² +EL² =6² +8² =100 =10²
KL =10.
KL² =ML*EL
ML =KL²/EL =100/8 =12,5.;
( 5/EM = ML --EL =12,5 -8 =4,5)
MK² =ML*ME;
MK² =12,5*4,5 =25*0,5*0,5*9;
MK =5*0,5*3 =7,5.
4) MN² =MK² +KN² =5² +²12² =25 +144 =169 =13²;
MN =13;
MK² =MN*MT ;
MT =MK²/MN=5²/13 =25/13.
NT =MN -MT =13 -25/13 =144/13;
KT² =MT*NT=25/13*144/13 =(5*12/13)² ;
KT =5*12/13 =60/13.
или из ΔMTK :
KT² =MK² -MT²² =5² -(25/13)² =(5 -25/13)(5+25/13) =40/13*90/13 =(2*3*10/13)²;
KT =2*3*10/13 =60/13 .
у=3+2х-x²;
производная:
y ' = 2-2x;
2-2x=0; x = 1;
y(1)=3+2*1-1² = 4;
Функция не является монотонной.
Одна точка экстремума: x = 1; у=4; производная в этой точке меняет знак с + на - ; это точка максимума функции.
Функция возрастающая на интервале x є (-∞;1).
Функция убывающая на интервале x є (1; +∞).
строим график:
пересечение с осью OY:
3+2х-x²=0;
x1=-1; x2=3;
строим по точкам:
x= -2; y= -5;
x= -1; y= 0;
x= 0; y= 3;
x= 1; y= 4;
x= 2; y= 3;
x= 3; y= 0;
x= 4; y= -5;
2)
у=3х²-x³;
производная:
y ' = 6x -3x²;
6x -3x²=0; x1 = 0; x2 = 2;
y(0)= 3х²-x³ = 0; y(2)= 3*2²-2³ = 4;
Функция не является монотонной.
Две точки экстремума:
(0; 0) производная в этой точке меняет знак с - на + ; это точка локального минимума функции;
и (2; 4) производная в этой точке меняет знак с + на - ; это точка локального максимума функции.
Функция убывающая на интервале x є (-∞; 0) U (2; +∞).
Функция возрастающая на интервале x є (0; 2).
строим график:
пересечение с осью OY:
3х²-x³=0;
x1=0; x2=3;
строим по точкам:
x= -1; y= 4;
x= 0; y= 0;
x= 1; y= 2;
x= 2; y= 4;
x= 3; y= 0;
3)
у=6х+x³;
производная:
y ' = 3x²+6;
3x²+6 = 0; Нет корней.
производная всегда больше нуля.
Функция является монотонной.
Функция возрастающая на интервале x є (-∞; +∞).
строим график:
пересечение с осью OY:
6х+x³=0;
x=0;
строим по точкам:
x= -1; y= -7;
x= -0.75; y= -4.92;
x= -0.5; y= -3.13;
x= -0.25; y= -1.52;
x= 0; y= 0;
x= 0.25; y= 1.52;
x= 0.5; y= 3.13;
x= 0.75; y= 4.92;
x= 1; y= 7;