Пусть цифры данного числа х,у, z, t 1000x+100y+10z+t-1000t-100z-10y-x=909 999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем 111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1 x=t+1, z=y+1 По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число t+1+y+y+1+t=9n 2(t+y+1)=9n, значит n=2, t+y=8 Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t 8 1 2 7 7 2 3 6 6 3 4 5 5 4 5 4 4 5 6 3 3 6 7 2 2 7 8 1 9 0 1 8 Итого 8 чисел удовлетворяют условию задачи
Задание №1
-12 находится левее от числа -6.
Есть как бы правило: начинаются (если это координатная плоскость)
отрицательные числа так(-12;-11;-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8;9;10;11;12.
Ну как то так.
Задание №2
) 3 1/3-0.8-2 3/4+2.5+0.3+1 7/12= (2.5+0.3-0.8)+
(3 1/3-2 3/4+1 7/12)= 2+(3 4/12+1 7/12-2 9/12)=2+2 2/12= 4 1/6
второй не знаю ссори
надеюсь хоть как то
Задание №3
- 4,1 + (- 8,3) - (- 7,3) - (+ 1,9) = - 4,1 - 8,3 + 7,3 - 1,9 = - (4,1 + 1,9) - (8,3 - 7,3) =
= - 6 - 1 = - ( 6+ 1) = - 7
Задание №4
хз
Задание №5
8|-|5|=8-5=3
7-|-5|=7-5=2
3>2
|8|-|5|>7-|-5|
Пошаговое объяснение:
1000x+100y+10z+t-1000t-100z-10y-x=909
999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем
111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1
x=t+1, z=y+1
По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число
t+1+y+y+1+t=9n
2(t+y+1)=9n, значит n=2, t+y=8
Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t
8 1 2 7
7 2 3 6
6 3 4 5
5 4 5 4
4 5 6 3
3 6 7 2
2 7 8 1
9 0 1 8
Итого 8 чисел удовлетворяют условию задачи