1)дана целая рациональная функция f(x): а) найти наибольшее и наименьшее значение на отрезке -2; 3; б) построить график этой функции.
2) исследовать функцию и построить ее график;
3) функция задана различными аналитическими выражениями для различных областей х: а) найти точки разрыва функций, если они существуют; б) найти односторонние пределы и скачок функции в точках разрыва; в) построить график функции.
4) решить на наибольшее и наименьшее значение функции.
(-3a^5x^3)^2*x^2=9a^10x^6*x²=9a^10x^8
#3
(x-2)^2+(4-x)(x+3)=x²-4x+4+4x+12-x²-3x=
-3x+16
#4
4^16*4^26/(4^3)^13=(4^42)/4^39=4^3=64
#5
18x^2y-12xy=6xy(3x-2)
#6
угол C=180-54-63=63°,следовательно ∆АВС-РАВНОБЕДРЕННЫЙ
сторона,лежащая напротив большего угла,больше
#7
t^2+4t+4/t^2-4=(t+2)²/(t-2)(t+2)=(t+2)/(t-2)
#8
(2x-1)(2x+1)-(2x+3)^2=38
4x²-1-(4x²+12x+9)=38
4x²-1-4x²-12x-9=38
-12x=38+10
-12x=48|:(-12)
x=-4
#9
{2y+3x=1|*2
{6x-3y=30
-{6x+4y=2
-{6x-3y=30
7y=-28|:7
y=-4
-8+3x=1
3x=1+8
3x=9|:3
x=3
#10
x^2-xy-4x+4y=(x²-xy)+(-4x+4y)=x(x-y)-4(x-y)=(x-y)(x-4)
#11
#12
S-x
0,3x+(0,3x+4)+28=x
0,6x-x=-32
-0,4x=-32|:(-0,4)
x=80(км)
Чтобы было проще решать, сначала упростим выражение, а потом уже подставим значения по условию
-(-х-5у)² +22ху + (3у - 2х)² = -(x^2+10xy+25y^2)+22xy+9y^2-12xy+4x^2 (
сдесь мы раскрыли скобки) = -x^2-10xy-25y^2+22xy+9y^2-12xy+4x^2 (привели подобные члены) = 3x^2+0-16y^2 (сократили подобные коэффициенты) = 3x^2+0-16y^2 = 3x^2-16y^2 (избавились от нуля, т.к. в нашем случае он не значим)
Подставляем значения:
3x^2-16y^2 при x=-3; y=2. Получаем:
(3 • (-3)^2) - ( 16 • 2^2) = (-3^3)-16•4 = (-27) - 64 = -91
ответ: -91