1. доказать, что множество всех целых положительных делителей числа 30, по принципу быть делителем, изоморфно множеству всех подмножеств множества (a,b,c), по включению. 2. множество а состоит из "а" элементов, множество b состоит из "b" элементов, b> a найти: максимальное и минимальное число элементов во множествах a⋂b; a∪b; a-b; b-а; 3. изобразить множество a={(x,y)∈z^2: (x-3)^2+(y-2)^2< 9, (x-6)^2+(y-2)^2⩽ 4} 4. изобразить множество b={(x,y)∈n^2: x> 2y-2, x< 3y, x< 9} 5. для каждого значения "а" определить, сколько решений имеет p.s. представим, что эти две фигурные скобки - одна большая {|x| + |y|=a {x^2+y^2=1
This summer I spent with my grandmother. I have lived with my grandmother in summer, but this year, I was surprised. After a few days seat at home reading books, I decided to go for a stroll. I got. First, there was nobody, but then came a lot of guys and I decided to meet them. All the rest of that summer I walked and played different games with them. We were having fun, Biking and rollerblading. But also during the summer, I did my homework, reading books and sometimes sat at the computer. Summer has flown so quickly and quietly. The time has come to say goodbye to all my new friends, but nothing. I hope that next year I come back again to her grandmother on vacation.