В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
omardakak
omardakak
14.05.2023 13:36 •  Математика

1. Докажите, что для произвольных множеств A, В и С справедливо следующее равенство: (A\B)\C=(A\C)\(B\C)
2. Докажите, что для любых подмножеств A и B универсального множества U справедливо следующее равенство: (A∩B)∪A=A∪B
3. Докажите, что для любых множеств A, B и C: A⊆B∩C⇔ A⊆B и A⊆C
4. Найти разбиение множества A по отношению эквивалентности

Показать ответ
Ответ:
Hamster02
Hamster02
09.11.2020 05:52

ответ:∂u/∂MP(M)=(∂u/∂x) (M)·cos α +(∂u/∂y) (M)·cos β +(∂u/∂z) (M)·cos γ =

=0·(6/7)–2·(–3/7)+3·(–2/7) = 0


Пошаговое объяснение:

∂u/∂MP=(∂u/∂x)(M)·cos α + (∂u/∂y)(M)·cos β +((∂u/∂z)(M)·cos γ  

Находим частные производные:

∂u/∂x=u`x=(xz2/y)`x + (xzy2)`x + (y/z4)`x=

= (z2/y)·x`+(zy2)·x`+0=

=(z2/y) + zy2;

∂u/∂y=u`y=(xz2/y)`y + (xzy2)`y + (y/z4)`y=

=xz2·(1/y)` + xz·(y2)`+(1/z4)·y`=

=xz2·(–1/y2) + 2xz·y+(1/z4)

∂u/∂y=u`z=(xz2/y)`z + (xzy2)`z + (y/z4)`z=

=(x/y)·(z2)`+(xy2)·(z)`+(y)·(z–4)`=

=(2xz/y)+(xy2)–4yz–5.

Находим значения частных производных в точке M(1;1;–1):

(∂u/∂x) (M)= u`x(M)=((–1)2/1) + (–1)·12=0

(∂u/∂y) (M) = u`y(M)=1·(–1)2·(–1/12) + 2·1·(–1)·1+(1/(–1)4)= –2

(∂u/∂z) (M) = u`z(M)=(2·1·(–1)/1)+(1·12)–4·1·(–1)–5=

= – 2 + 1 + 4 = 3

Находим координаты вектора

MP=(7–1;–2–1;1–(–1))=(6;–3;–2)

и его длину

|MP|=√62+ (–3)2+(–2)2=√49=7

Находим направляющие косинусы вектора MP

cos α =6/7

cos β =–3/7

cos γ =–2/7

0,0(0 оценок)
Ответ:
HoRMaX
HoRMaX
09.11.2020 05:52

ответ:∂u/∂MP(M)=(∂u/∂x) (M)·cos α +(∂u/∂y) (M)·cos β +(∂u/∂z) (M)·cos γ =

=0·(6/7)–2·(–3/7)+3·(–2/7) = 0


Пошаговое объяснение:

∂u/∂MP=(∂u/∂x)(M)·cos α + (∂u/∂y)(M)·cos β +((∂u/∂z)(M)·cos γ  

Находим частные производные:

∂u/∂x=u`x=(xz2/y)`x + (xzy2)`x + (y/z4)`x=

= (z2/y)·x`+(zy2)·x`+0=

=(z2/y) + zy2;

∂u/∂y=u`y=(xz2/y)`y + (xzy2)`y + (y/z4)`y=

=xz2·(1/y)` + xz·(y2)`+(1/z4)·y`=

=xz2·(–1/y2) + 2xz·y+(1/z4)

∂u/∂y=u`z=(xz2/y)`z + (xzy2)`z + (y/z4)`z=

=(x/y)·(z2)`+(xy2)·(z)`+(y)·(z–4)`=

=(2xz/y)+(xy2)–4yz–5.

Находим значения частных производных в точке M(1;1;–1):

(∂u/∂x) (M)= u`x(M)=((–1)2/1) + (–1)·12=0

(∂u/∂y) (M) = u`y(M)=1·(–1)2·(–1/12) + 2·1·(–1)·1+(1/(–1)4)= –2

(∂u/∂z) (M) = u`z(M)=(2·1·(–1)/1)+(1·12)–4·1·(–1)–5=

= – 2 + 1 + 4 = 3

Находим координаты вектора

MP=(7–1;–2–1;1–(–1))=(6;–3;–2)

и его длину

|MP|=√62+ (–3)2+(–2)2=√49=7

Находим направляющие косинусы вектора MP

cos α =6/7

cos β =–3/7

cos γ =–2/7

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота