(n² +n)(n+2) = n(n +1)(n+2) данное выражение является произведением трех последовательных натуральных чисел, но т.к. из трех последовательных чисел хотя бы одно всегда кратно трем, то значит хотя бы один из множителей n, n +1 или n+2 делится на 3 => всё выражение кратно трем.
2) n³ - n кратно 6
n³ - n = n(n² - 1) = n(n - 1)(n +1) = (n - 1)n(n +1) аналогично предыущему примеру кратно 3, но произведение трех последовательных натуральных чисел также кратно и 2, т.к. из двух последовательных чисел хотя бы одно всегда кратно двум. Итак, данное выражение кратно 2 и 3, значит по признаку делимости на 6 оно кратно 6.
1) (n² +n)(n+2) кратно 3.
(n² +n)(n+2) = n(n +1)(n+2) данное выражение является произведением трех последовательных натуральных чисел, но т.к. из трех последовательных чисел хотя бы одно всегда кратно трем, то значит хотя бы один из множителей n, n +1 или n+2 делится на 3 => всё выражение кратно трем.
2) n³ - n кратно 6
n³ - n = n(n² - 1) = n(n - 1)(n +1) = (n - 1)n(n +1) аналогично предыущему примеру кратно 3, но произведение трех последовательных натуральных чисел также кратно и 2, т.к. из двух последовательных чисел хотя бы одно всегда кратно двум. Итак, данное выражение кратно 2 и 3, значит по признаку делимости на 6 оно кратно 6.