В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
polinabighui
polinabighui
02.10.2020 18:33 •  Математика

1)докажите что произведение чётного числа на любое натуральное число является чётным числом. 2)докажите что сумма двух чётных чисел является чётным числом. 3)покажите что нечётные числа 21 23 43 можно записать в виде 2n+1 где n-натуральное число

Показать ответ
Ответ:
DoctorVatson1
DoctorVatson1
01.10.2020 13:01
Ну ответ на все твои вопросы находится в 3 вопросе.
И так
1) )Докажите что произведение чётного числа на любое натуральное число является чётным числом.
Чётное число, которое делится на 2 без остатка и любое четное число можно представить как 2n, где n - где натуральное число
И нас просят доказать что произведение 2n на x, тоже четное число, где х - тоже натуральное число.
Доказательство:
Число вида 2*n*x делится на 2 так как в своем розложении содержит число 2.
Что и требовалось доказать


2)Докажите что сумма двух чётных чисел является чётным числом
Докакзательство
Пусть х=2*n и у=2*m, где n и m - натуральные числа
Тогда х+у= 2*n+2*m
Выносим 2 за скобки

х+у= 2*n+2*m=2*(n+m)
Как видим Х+У делится на 2 так как в своем разложении содержит число 2


3)Покажите что нечётные числа 21 23 43 можно записать в виде 2n+1 где n-натуральное число

21=2*N+1, где N=10
21=2*10+1

23=2*N+1, где N=11
23=11*2+1

43=2*N+1, где N=21
43=21*2+1
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота