1) Из 18-тм шаров в урне 8 красных. Чему равна вероятность, что из 9-ти вытащенных на удачу шаров 3 окажутся красными. Всё остальное посмотрите в фото.
В третьей урне будет 2 шара. Введем гипотезы: H1 - в 3 урне 2 белых шара, H2 - в 3 урне 2 черных шара, H3 - в 3 урне черный и белый шары. Посчитаем вероятности гипотез: p(H1) = (2/5)*(4/6) = 4/15 p(H2) = (3/5)*(2/6) = 1/5 p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15 Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1 Событие A заключается в том что из 3 урны достали белый шар. Посчитаем условные вероятности p(A|H1) = 1, из двух белых выбирают белый p(A|H2) = 0, из двух черных выбирает белый p(A|H3) = 1/2, из черного и белого выбирают белый Полная вероятность события A: p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15 ответ: 8/15
Подставляя в формулу для f(x) значения x1=-2 и x2=0, находим y1=2*(x1)²-3*x1-2=2*4+6-2=12 и y2=2*(x2)²-3*x2-2=-2. Таким образом, секущая проходит через точки A1(x1,y1) и A2(x2,y2). Запишем уравнение секущей в виде (x-x1)/(x2-x1)=(y-y1)/(y2-y1). Подставляя в это уравнение известные значения x1,x2,y1,y2, получаем уравнение (x+2)/2=(y-12)/(-14). Оно приводится к уравнению 7*x+y+2=0. Отсюда следует уравнение y=-7*x-2, которое записано в виде y=k*x+b, где k - угловой коэффициент прямой. Тогда k=-7, а так как k=tg(α), то α=arctg(k)=arctg(-7)≈98°. ответ: k=-7, α≈98°.
p(H2) = (3/5)*(2/6) = 1/5
p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15
Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1
Событие A заключается в том что из 3 урны достали белый шар.
Посчитаем условные вероятности
p(A|H1) = 1, из двух белых выбирают белый
p(A|H2) = 0, из двух черных выбирает белый
p(A|H3) = 1/2, из черного и белого выбирают белый
Полная вероятность события A:
p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15
ответ: 8/15