1. Какон вы можете привести пример двух равных обыкновенных дробей? 2. Како ми можно сократить обыкновенную дробь? 3. Какая дробь называется несократимой обыкновенной дробью?
Первое известное определение равных пропорций было дано как равенство последовательных вычитаний[1], современным языком это можно выразить как равенство цепных дробей для отношений величин.[2] Позже Евдокс упростил определение, равенство пропорций {\displaystyle a:b=c:d} {\displaystyle a:b=c:d} им определялось как одновременное выполнение одной из трёх пар соотношений
для любой пары натуральных чисел {\displaystyle m} m и {\displaystyle n} n. Это определение даётся в «Началах» Евклида.
С появлением вещественных чисел отпала необходимость в специальной теории пропорций, древние математики не рассматривали пропорции длины как числа. Определение Евдокса, в несколько более абстрактном виде использовалось далее при определении вещественных чисел данное Дедекиндом через сечения.
Связанные определения
Арифметическая пропорция
См. также: Среднее арифметическое
Равенство двух разностей {\displaystyle a-b=c-d} a-b=c-d иногда называют арифметической пропорцией[3].
Гармоническая пропорция
Основная статья: Золотое сечение
Если у геометрической пропорции средние члены равны, а последний является разницей между первым и средним, такая пропорция называется гармонической: {\displaystyle a:b=b:(a-b)} a:b=b:(a-b). В этом случае, разложение {\displaystyle a} a на сумму двух слагаемых {\displaystyle b} b и {\displaystyle a-b} a-b называется гармоническим делением или золотым сечением[4].
Задачи на тройное правило
В содержание задачи на простое тройное правило входят две величины, связанные пропорциональной зависимостью, при этом даются два значения одной величины и одно из соответствующих значений другой величины, требуется же найти её второе значение.
Задачами на сложное тройное правило называют задачи, в которых по ряду нескольких (более двух) пропорциональных величин требуется найти значение одной из них, соответствующее другому ряду данных значений величин[5][6].
природа - это все то, что нас окружает, что не создано человеком, существует независимо от людей.
В разных частях земного шара природа отличается. В России, в разных местах, природа сильно отличаeтся от природы других мест. Поэтому родная природа для каждого человека - своя.
Родная природа - этот тот пейзаж, который видит человек вблизи своего города, села, места где oн родился.
Cейчас много говорят об охране природы. В школe, нa уроках экологии обсуждают ситуацию в окружающем мире. Природа сама восстанавливается, но очень медленно, поэтому люди должны беречь и охранять тот мир, в котором живут.
Наша природа очень богатая и заслуживает того, чтобы мы ее берегли!
Обращение пропорции. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac ab}={\frac cd}, то {\displaystyle \ {\frac {b}{a}}={\frac {d}{c}}} \ {\frac ba}={\frac dc}
Перемножение крайних членов пропорции со средними (крест-накрест). Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac ab}={\frac cd}, то {\displaystyle \ ad=bc} \ ad=bc
Перестановка средних и крайних членов. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac ab}={\frac cd}, то
{\displaystyle \ {\frac {a}{c}}={\frac {b}{d}}} \ {\frac ac}={\frac bd} (перестановка средних членов пропорции),
{\displaystyle \ {\frac {d}{b}}={\frac {c}{a}}} \ {\frac db}={\frac ca} (перестановка крайних членов пропорции).
Увеличение и уменьшение пропорции. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac ab}={\frac cd}, то
{\displaystyle \ {\dfrac {a+b}{b}}={\dfrac {c+d}{d}}} \ {\dfrac {a+b}{b}}={\dfrac {c+d}{d}} (увеличение пропорции),
{\displaystyle \ {\dfrac {a-b}{b}}={\dfrac {c-d}{d}}} \ {\dfrac {a-b}{b}}={\dfrac {c-d}{d}} (уменьшение пропорции).
Составление пропорции сложением и вычитанием. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac ab}={\frac cd}, то
{\displaystyle \ {\dfrac {a+c}{b+d}}={\frac {a}{b}}={\frac {c}{d}}} \ {\dfrac {a+c}{b+d}}={\frac ab}={\frac cd} (составление пропорции сложением),
{\displaystyle \ {\dfrac {a-c}{b-d}}={\frac {a}{b}}={\frac {c}{d}}} \ {\dfrac {a-c}{b-d}}={\frac ab}={\frac cd} (составление пропорции вычитанием).
История
Первое известное определение равных пропорций было дано как равенство последовательных вычитаний[1], современным языком это можно выразить как равенство цепных дробей для отношений величин.[2] Позже Евдокс упростил определение, равенство пропорций {\displaystyle a:b=c:d} {\displaystyle a:b=c:d} им определялось как одновременное выполнение одной из трёх пар соотношений
{\displaystyle m\cdot a>n\cdot b} {\displaystyle m\cdot a>n\cdot b} и {\displaystyle m\cdot c>n\cdot d} {\displaystyle m\cdot c>n\cdot d},
{\displaystyle m\cdot a=n\cdot b} {\displaystyle m\cdot a=n\cdot b} и {\displaystyle m\cdot c=n\cdot d} {\displaystyle m\cdot c=n\cdot d},
{\displaystyle m\cdot a<n\cdot b} {\displaystyle m\cdot a<n\cdot b} и {\displaystyle m\cdot c<n\cdot d} {\displaystyle m\cdot c<n\cdot d}
для любой пары натуральных чисел {\displaystyle m} m и {\displaystyle n} n. Это определение даётся в «Началах» Евклида.
С появлением вещественных чисел отпала необходимость в специальной теории пропорций, древние математики не рассматривали пропорции длины как числа. Определение Евдокса, в несколько более абстрактном виде использовалось далее при определении вещественных чисел данное Дедекиндом через сечения.
Связанные определения
Арифметическая пропорция
См. также: Среднее арифметическое
Равенство двух разностей {\displaystyle a-b=c-d} a-b=c-d иногда называют арифметической пропорцией[3].
Гармоническая пропорция
Основная статья: Золотое сечение
Если у геометрической пропорции средние члены равны, а последний является разницей между первым и средним, такая пропорция называется гармонической: {\displaystyle a:b=b:(a-b)} a:b=b:(a-b). В этом случае, разложение {\displaystyle a} a на сумму двух слагаемых {\displaystyle b} b и {\displaystyle a-b} a-b называется гармоническим делением или золотым сечением[4].
Задачи на тройное правило
В содержание задачи на простое тройное правило входят две величины, связанные пропорциональной зависимостью, при этом даются два значения одной величины и одно из соответствующих значений другой величины, требуется же найти её второе значение.
Задачами на сложное тройное правило называют задачи, в которых по ряду нескольких (более двух) пропорциональных величин требуется найти значение одной из них, соответствующее другому ряду данных значений величин[5][6].
природа - это все то, что нас окружает, что не создано человеком, существует независимо от людей.
В разных частях земного шара природа отличается. В России, в разных местах, природа сильно отличаeтся от природы других мест. Поэтому родная природа для каждого человека - своя.
Родная природа - этот тот пейзаж, который видит человек вблизи своего города, села, места где oн родился.
Cейчас много говорят об охране природы. В школe, нa уроках экологии обсуждают ситуацию в окружающем мире. Природа сама восстанавливается, но очень медленно, поэтому люди должны беречь и охранять тот мир, в котором живут.
Наша природа очень богатая и заслуживает того, чтобы мы ее берегли!