1.какой вид может иметь множество решений линейного неравенства? Квадратного неравенства?
2.какие стандартные неравенства вы знаете? Какими могут быть множества их решений?
3.в чем состоит алгоритм решения рационального неравенства методом интервалов?
4.какое свойство непрерывной функции используется в методе интервалов?
5.как применяется метод интервалов для раскрытия модуля?
1.Гоняют по кольцу. Длинна кольца 350 км. Старт и финиш в одной точке. Длинна этапа эстафеты - 75 км. Что ищем: наименьшее количество этапов. 2. А может 350 км разделится на 75 км, так что бы получилось число без остатка (что бы старт и финиш совпали) . Проверяем: 350:75=4,666... Нет не получилось. Тогда следующая точка совпадения будет - 2 круга, а это? 3. Два круга = 2 х 350км = 700 км. Может теперь разделится без остатка? Проверяем: 700:75=9,333... Нет, опять не получилось. Тогда следующая точка совпадения будет - 3 круга, а это? 4. Три круга = 3 х 350км = 1050 км. Снова ищем ровное число этапов. Проверяем: 1050:75=14. Свершилось! Ура!! ! ответ: наименьшее количество этапов 14(четырнадцать) , обоснованием ответа является решение-рассуждение.
2015 = 5*13*31 = 13*155
Возьмем, например, 13 гномов. Пусть они обиделись по цепочке:
1 на 2, 2 на 3, 3 на 4, 4 на 5, 5 на 6, 6 на 7, 7 на 8, 8 на 9, 9 на 10,
10 на 11, 11 на 12, 12 на 13, 13 на 1.
Разделим их на тройки: (1,2,3), (4,5,6), (7,8,9), (10,11,12) и 13.
Теперь составим 1 группу из первых гномов: (1,4,7,10),
вторую из вторых: (2,5,8,11) и третью из третьих: (3,6,9,12)
13-го гнома определим во 2 группу, т.к. у него обиды с 1 и 12.
Таким образом, 13 гномов мы распределили.
Теперь тоже самое делаем в каждой из 155 групп по 13 гномов.
Всё!