1)На консультации было 20 школьников и разбиралось 20 задач. Оказалось, что каждый решил две задачи и каждую задачу решили двое.
Можно ли организовать разбор задач так, чтобы каждый школьник
рассказал одну из решенных им задач и все задачи были разобраны.
2)Сколько различных значений можно получить, расставляя всеми
возможными скобки в выражении 2 : 3 : 5 : 7 : 9 : 11 : 13 : 17 :
19 : 23 : 29 ?
1) Начнем с первого вопроса про разбор задач. У нас есть 20 школьников и 20 задач. Каждый решил две задачи, а каждую задачу решили двое. Нам нужно организовать разбор задач так, чтобы каждый школьник рассказал одну из решенных им задач, при этом все задачи должны быть разобраны.
Давайте рассмотрим, как это можно сделать. Поскольку каждая задача была решена двумя школьниками, это значит, что у нас есть 20 пар школьников, решивших каждую задачу.
Мы можем организовать разбор следующим образом:
- Выдадим каждому школьнику по одной пустой бумажке.
- Для каждой задачи, пусть один из школьников (назовем его "рассказчиком") напишет свое решение на своей бумажке.
- Затем, второй школьник, решивший эту же задачу, после рассказа первого школьника, добавит свое решение на обратной стороне бумажки.
- Таким образом, каждая бумажка будет содержать два решения для двух школьников, решивших каждую задачу.
В результате, когда мы будем разбирать задачи, мы просто прослушаем рассказ одного школьника и сразу перейдем смотреть на обратную сторону его бумажки, чтобы услышать решение другого школьника для этой задачи.
Таким образом, мы можем организовать разбор задач так, чтобы каждый школьник рассказал одну из решенных им задач и все задачи были разобраны.
2) Перейдем ко второму вопросу про расстановку скобок в выражении. У нас есть следующее выражение:
2 : 3 : 5 : 7 : 9 : 11 : 13 : 17 : 19 : 23 : 29
Задача заключается в том, чтобы поставить скобки между числами таким образом, чтобы получить как можно больше различных значений.
Давайте рассмотрим, как мы можем это сделать. У нас есть 10 чисел и 9 возможных мест для скобок между ними. Значит, у нас есть 9 различных комбинаций размещения скобок.
Для простоты рассмотрим одну из этих комбинаций, например:
(2 : 3) : (5 : (7 : (9 : (11 : (13 : (17 : (19 : (23 : 29))))))))
Это только один пример, но мы можем попробовать различные комбинации и увидеть, что каждая из них даст нам новое значение.
Таким образом, используя все возможные комбинации размещения скобок, мы можем получить 9 различных значений.
Надеюсь, что я смог ответить на твои вопросы достаточно подробно и обстоятельно. Если у тебя возникнут еще вопросы, не стесняйся задавать!