В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
неточно1
неточно1
20.02.2022 03:54 •  Математика

1. Найди значения суммы и разности чи при k= 20, k= 19, k= 40, k= 80.
2
2 см 2
2 CM
18 см
M​

Показать ответ
Ответ:
novkristinaa
novkristinaa
13.03.2020 21:20
Это будет выглядеть примерно, как на рисунке.
Угол ACB = 90, ADB = 60, сторона AD = BD.
Треугольник ADB - равнобедренный с углом 60, т.е. равносторонний.
AD = BD = AB
Отрезок CD перпендикулярен к плоскости ABC.
Так как стороны AD = BD, и углы ADC = BDC, то проекции AC = BC.
Значит, треугольник ABC - прямоугольный и равнобедренный.
AC = BC = AB/√2 = AB*√2/2.
Но AD = AB.
В прямоугольном треугольнике ACD гипотенуза AD = AB,
а катет AC = AB*√2/2.
Значит, CD = AC = AB*√2/2 = AD*√2/2
Значит, треугольник ACD - тоже прямоугольный и равнобедренный.
Как и треугольник BCD.
Угол в прямоугольном равнобедренном треугольнике
ADC = CAD = 45 градусов.

Из данной точки к данной плоскости проведены две равные наклонные, образующие между собой угол 60гра
0,0(0 оценок)
Ответ:
каккураит
каккураит
20.03.2020 20:03
Данное уравнение - линейное неоднородное. 
Общее решение линейного неоднородного уравнения есть сумма общего решения соответствующего линейного однородного уравнения и частного решения исходного неоднородного.
Соответствующее однородное уравнение имеет вид
y'' - 7y' = 0
Соответствующее характеристическое уравнение имеет вид
k^2 - 7k = 0.
Его корни k_1 = 0, k_2 = 7.
Общее решение однородного уравнения имеет вид
y_0(x) = C_1e^{7x} + C_2, где C1, C2 - произвольные постоянные.
Найдем частное решение неоднородного уравнения. Сделаем это методом подбора.
Так как один из корней характеристического уравнения равен нулю, то "очевидный подбор" y = Ax^2 + Bx + C следует умножить на x и в таком виде искать решение. То есть, ищем частное решение неоднородного уравнения в виде \tilde{y}(x) = x(Ax^2+Bx+C), где A, B, C - неизвестные числа.
Дифференцируя, находим выражения для y' и y'':
y' = 3Ax^2+2Bx+C \\ y'' = 6Ax+2B.
Подставляем полученные выражения в уравнение:
(6Ax+2B) - 7(3Ax^2+2Bx+C) = 3x^2+4x+4 \\ -21Ax^2+(6A-14B)x+(2B-7C) = 3x^2+4x+4.
Сравнивая коэффициенты при одинаковых степенях, будем иметь:
\left\{\begin{matrix}-21A=3\\6A-14B=4\\2B-7C=4\end{matrix}\right.
Решая эту систему, имеем:
\left\{\begin{matrix} A=- \frac{1}{7} \\ B=- \frac{17}{49} \\ C=- \frac{230}{343} \end{matrix}\right.
То есть, частное решение неоднородного уравнения есть
\tilde{y}(x) = - \frac{1}{7} x^3 - \frac{17}{49} x^2 - \frac{230}{343} x.
Значит общее решение неоднородного уравнения имеет вид
y(x) = y_0(x) + \tilde{y}(x) = C_1e^{7x} + C_2 - \frac{1}{7} x^3 - \frac{17}{49} x^2 - \frac{230}{343} x.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота