В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
manshev2018
manshev2018
28.11.2021 21:22 •  Математика

1. Найдите объем прямоугольного параллелепипеда АВСDА1 В1 С1 D1

если СD = 12 см, ВD= 13 см и ВС1= 11 см.

2. Основанием прямой призмы является прямоугольный треугольник с катетами 3 и 4. Найти объем призмы, если её высота равна 10.

3. Найти объем цилиндра, если известно, что его осевое сечение прямоугольник, площадь которого равна 20 м^2, а высота цилиндра равна 5 м.

4. Осевым сечением конуса является равнобедренный прямоугольный треугольник, площадь которого равна 9 м^2. Найти объем конуса.

Показать ответ
Ответ:
kristina05081999
kristina05081999
19.09.2020 11:26

21,06

Пошаговое объяснение:

0,63                100,98/54

                                 

                         54         1,87              43,47

х  69                                        -

                                                              1,87

567                    46,9                       --43,2

378                                                  

                 378                       21,06

 43,47                     378

                             

                                    0

0,0(0 оценок)
Ответ:
ievghienii1
ievghienii1
24.02.2021 07:35
Вычислим предел интеграла
\displaystyle\lim_{R\to\infty}\oint_{C_R}\frac{e^{iz}\,dz}{1+z^4} 
где интеграл берётся по контуру, состоящему из верхней полуокружности и отрезка [-R, R], обходимому в положительном направлении.

С одной стороны, этот интеграл можно представить в виде суммы интегралов по дуге и отрезку, притом в силу леммы Жордана интеграл по дуге стремится к нулю, так как
\displaystyle\left|\frac1{1+z^4}\right|=o\left(\frac1{R^3}\right)

С другой стороны, этот интеграл можно взять при вычетов. Под интегралом стоит мероморфная функция, имеющая простые полюсы в корнях 4-й степени из -1. В контур интегрирования попадают два из них, e^{i\pi/4} и e^{i3\pi/4}. Значения вычета функции f(z) / g(z) в простом полюсе z=z0, если f(z) не имеет особенностей в точке z0, а g(z) дифференцируема, вычисляются по формуле f(z0) / g'(z0).

\displaystyle\oint\dots=2\pi i \sum_j \mathop{\mathrm{res}}\limits_{z=z_j}\frac{e^{iz}}{1+z^4}=2\pi i\left(\frac{e^{\frac 1{\sqrt2}(-1+i)}}{4(e^{i\pi/4})^3}+\frac{e^{\frac 1{\sqrt2}(-1-i)}}{4(e^{i3\pi/4})^3}\right)=\\=\frac{e^{-1/\sqrt2}\pi i}2\left(e^{i\left(\frac 1{\sqrt2}-\frac{3\pi}4\right)}+e^{i\left(\frac {-1}{\sqrt2}-\frac{\pi}4\right)}\right)

\displaystyle\int_{-\infty}^{\infty}\frac{\cos x\,dx}{1+x^4}=\mathop{\mathrm{Re}}\lim_{R\to\infty}\int_{-R}^R\frac{e^{iz}\,dz}{1+z^4}=\mathop{\mathrm{Re}}\lim_{R\to\infty}\oint_{C_R}\frac{e^{iz\,dz}}{1+z^4}=\\=\mathop{\mathrm{Re}}\frac{e^{-1/\sqrt2}\pi i}2\left(e^{i\left(\frac 1{\sqrt2}-\frac{3\pi}4\right)}+e^{i\left(\frac {-1}{\sqrt2}-\frac{\pi}4\right)}\right)=
\displaystyle=-\frac{e^{-1/\sqrt2}\pi}2\mathop{\mathrm{Im}}\left(e^{i\left(\frac 1{\sqrt2}-\frac{3\pi}4\right)}+e^{i\left(\frac {-1}{\sqrt2}-\frac{\pi}4\right)}\right)=\\=-\frac{e^{-1/\sqrt2}\pi}2\left(\sin\left(\frac1{\sqrt2}-\frac{3\pi}4\right)-\sin\left(\frac1{\sqrt2}+\frac\pi4\right)\right)=\\=\frac{e^{-1/\sqrt2}\pi}{\sqrt2}\left(\sin\left(\frac1{\sqrt2}\right)+\cos\left(\frac1{\sqrt2}\right)\right)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота