В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Sayat2007
Sayat2007
23.01.2021 07:42 •  Математика

1. Найдите область определения функций f(x) \frac{2x + 3}{3x {}^{2} - 6x}

2 исследовать функцию на четность и нечётность


\frac{5 {x}^{3} }{3x { +}^{4 } +7 }

Показать ответ
Ответ:
odarka1596
odarka1596
21.02.2020 03:47

Рассмотрим немного другую задачу. Выбрасываются k (k>0) кубиков, человек загадывает число от 1 до 6. Найти вероятность того, что число присутствует хотя бы на одном из кубиков

Событие А="число присутствует хотя бы на одном из кубиков" противоположно событию В="число не присутствует ни на одном из кубиков". Тогда p(A)=1-p(B)

Вероятность не угадать число на одном кубике равна \dfrac{5}{6} (среди 6 чисел 5 не подойдут). Тогда вероятность не угадать число на k кубиках равна  p(B)=(\dfrac{5}{6})^k=p(A)=1-(\dfrac{5}{6})^k - это и есть искомая вероятность в данной задаче.

Вернемся к исходной задаче. На 1ом этапе вероятность угадать число равна (1-(\dfrac{5}{6})^6) . При условии угадывания числа, на следующем этапе остается 6-1=5 кубиков. Тогда вероятность угадывания на 2ом этапе равна (1-(\dfrac{5}{6})^5) . При условии угадывания числа, на следующем этапе остается 5-1=4 кубиков. И т.д. На последнем этапе останется 2 кубика, и вероятность угадывания будет равна (1-(\dfrac{5}{6})^2)

Тогда искомая вероятность (1-(\dfrac{5}{6})^6)(1-(\dfrac{5}{6})^5)(1-(\dfrac{5}{6})^4)(1-(\dfrac{5}{6})^3)(1-(\dfrac{5}{6})^2)\approx 0.027

0,0(0 оценок)
Ответ:
оля2053
оля2053
21.02.2020 03:47

ответ: p=178/297.

Пошаговое объяснение:

Событие А - студенту досталась задача повышенной сложности - может произойти вместе с одним из событий A1 и A2, называемых гипотезами:

A1 - преподаватель переложил из второго конверта в третий простую задачу:

А2 - задачу повышенной сложности.

Тогда по формуле полной вероятности P(A)=P(A1)*P(A/A1)+P(A2)*P(A/A2).

Но P(A/A1)=6/11, а P(A/A2)=7/11. Остаётся найти P(A1) и P(A2). Заметим сразу, что так как события A1 и A2 несовместны и притом образуют полную группу, то P(A1)+P(A2)=1, откуда P(A2)=1-P(A1). Событие A1 может произойти  совместно с одной из 4-х гипотез:

H1 - преподаватель переложил из первого конверта во второй две простых задачи;

H2 - две задачи повышенной сложности;

H3 - простую и повышенной сложности;

H4 - повышенной сложности и простую.

Тогда по формуле полной вероятности P(A1)=P(H1)*P(A1/H1)+P(H2)*P(A1/H2)+P(H3)*P(A1/H3)+P(H4)*P(A1/H4). Но P(H1)=8/12*7/11=56/132=14/33; P(H2)=4/12*3/11=12/132=3/33; P(H3)=8/12*4/11=32/132=8/33; P(H4)=4/12*8/11=32/132=8/33; P(A1/H1)=8/18; P(A1/H2)=6/18; P(A/H3)=P(A/H4)=7/18.

Отсюда P(A1)=121/297 ⇒P(A2)=1-121/297=176/297 и тогда P(A)=121/297*6/11+176/297*7/11=178/297.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота