В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
artempryadko2006
artempryadko2006
04.06.2020 06:42 •  Математика

1. Найдите все общие точки графика функции y = 3x – x3 и касательной, проведенной к этому графику через точку P(0; 16).

2. Найдите кратчайшее расстояние между параболой y =x^2
2 + 6x + 10 и прямой

Показать ответ
Ответ:
Жанел130107
Жанел130107
26.12.2023 18:17
1. Найдите все общие точки графика функции y = 3x - x^3 и касательной, проведенной к этому графику через точку P(0; 16).

Для того чтобы найти все общие точки графика функции y = 3x - x^3 и касательной, проведенной к этому графику через точку P(0; 16), необходимо найти уравнение касательной и найти точки их пересечения.

Шаг 1: Найдем уравнение касательной. Для этого воспользуемся формулой для уравнения касательной в точке (x1, y1):

y - y1 = f'(x1) * (x - x1),

где f'(x1) - производная функции в точке x1.

Дифференцируя функцию y = 3x - x^3, получим:

f'(x) = 3 - 3x^2.

Теперь подставим значение x1 = 0 и y1 = 16:

y - 16 = (3 - 3(0)^2) * (x - 0).

Упрощаем выражение:

y - 16 = 3x,

y = 3x + 16.

Таким образом, уравнение касательной к графику функции y = 3x - x^3 в точке P(0; 16) будет y = 3x + 16.

Шаг 2: Найдем точки пересечения графика функции y = 3x - x^3 и касательной y = 3x + 16.

Подставим выражение для y из уравнения касательной в уравнение графика функции:

3x - x^3 = 3x + 16.

Избавимся от переменной x:

0 = x^3 - 16.

Для решения этого уравнения возможно применить так называемую "разность кубов", т.е. выражение вида a^3 - b^3 = (a - b)(a^2 + ab + b^2).

Таким образом, преобразуем уравнение:

0 = (x - 2)(x^2 + 2x + 8).

Теперь решим полученное уравнение:

x - 2 = 0 => x = 2.

x^2 + 2x + 8 = 0.

Данное квадратное уравнение не имеет действительных корней, так как его дискриминант отрицательный.

Итак, единственной общей точкой графика функции y = 3x - x^3 и касательной, проведенной через точку P(0; 16), будет точка (2, -2).

2. Найдите кратчайшее расстояние между параболой y = x^2 + 6x + 10 и прямой.

Чтобы найти кратчайшее расстояние между параболой y = x^2 + 6x + 10 и прямой, необходимо найти точку пересечения параболы и прямой, поставить перпендикуляр к прямой через эту точку и найти точку пересечения перпендикуляра с параболой. Расстояние между этими двумя точками будет кратчайшим расстоянием.

Шаг 1: Найдем точку пересечения параболы y = x^2 + 6x + 10 и прямой.

Поставим параболу равной прямой:

x^2 + 6x + 10 = y.

Теперь подставим уравнение прямой y = mx + b, где m - наклон прямой, b - точка пересечения прямой с осью y (y-перехват):

x^2 + 6x + 10 = mx + b.

Мы знаем, что так как парабола и прямая пересекаются в одной точке, то их значения в этой точке должны быть равными. Поэтому можно записать:

x^2 + 6x + 10 = mx + b,

x^2 + 6x - mx + 10 - b = 0.

Теперь нужно найти значения m и b, которые удовлетворяют этому уравнению.

Шаг 2: Найдем точку пересечения параболы и прямой.

Решим полученное квадратное уравнение:

x^2 + (6 - m)x + (10 - b) = 0.

Дискриминант этого квадратного уравнения должен быть равен 0, так как парабола и прямая пересекаются в одной точке.

(6 - m)^2 - 4(1)(10 - b) = 0.

(36 - 12m + m^2) - 40 + 4b = 0.

m^2 - 12m - 4b - 4 = 0.

Теперь у нас есть система из двух уравнений, которую нужно решить:

x^2 + 6x + 10 = mx + b,
m^2 - 12m - 4b - 4 = 0.

Решение этой системы позволит найти точку пересечения параболы и прямой.

Обратите внимание, что это двухшаговый процесс, и он может занять некоторое время для вычислений и решений уравнений. Пожалуйста, уточните, если вам необходимо более подробное объяснение или если у вас есть дополнительные вопросы.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота