В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

1)найти экстремум функции z=xy при условии x+y=1 2)найти наибольшее и наименьшее значение функции z=^2-2xy-y^2+4x+1 в областе : x+y-10=0 y=0 x=5

Показать ответ
Ответ:
карина5647
карина5647
09.10.2020 11:44

Решение. Область представляет собой часть параболы, лежащую ниже оси ОХ, точки пересечения с осью М1(-1,0) и М2(1,0). Найдём критические точки: ∂z/∂x=2x-y ; ∂z/∂y=x ; 2x-y=0 ; x=0 : y=0 ; М0(0,0)-критическая точка, лежащая внутри области. Найдём критические точки на границе области.  

Если y=4x²-4 : z=x²+x(4x ²-4)-2=x²+4x³+4x-2 ; z ‘=2x+12x²-4 ; 2x+12x²-4=0 ; 6x²+x-2=0; x1=-2/3 ; x2=0,5, соответствующие точки М3(-2/3, 20/9) , М4(0,5 ,-3) , пусть теперь у=0 (ось ОХ) : z=-2, здесь критических точек нет. Теперь найдём значения z во всех указанных точках и выберем наибольшее и наименьшее : z(M0)=z(0,0)=-2 ;  

z(M1)=z(-1,0)=-1 ; z(M2)=z(1,0)=-1 ;  

z(M3)=z(-2/3, 20/9)=-82/27≈-3,037;  

z(M4)=z(0,5 ; -3)=-13/4≈-3,25 ; ответ: zнаим. =z(0,5 ; -3)=-3,25 ;zнаиб. =z(-1,0)=z(1,0)=-1  

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота