1. Постройте график функции, заданной формулой y=2x-6. 2.Не выполняя построения графика функции y=1,4х-5, выясните, проходит ли график через точки A(2; -2,2) и В(5; -2).
3. Постройте график функции у=4х. Найдите по графику:
a) значение у при х=-1; 0; 1,5. б)значение х, при котором у=-6; 4.
4. Найдите значения и b, если известно, что график функции y=kx+b проходит через точки A(2;7) и В(-1; -2).
Чтобы решить эту задачу, нужно прежде всего припомнить из естественной истории, сколько ног у жуков и сколько у пауков: у жука 6 ног, у паука - 8.
Зная это, предположим, что в коробке были одни только жуки, числом 8 штук. Тогда всех ног было бы 6 * 8 = 48, на 6 меньше, чем указано в задаче. Заменим теперь одного жука пауком. От этого число ног увеличится на 2, потому что у паука не 6 ног, а 8.
Ясно, что если мы сделаем три такие замены, мы доведем общее число ног в коробке до требуемых 54. Но тогда из 8 жуков останется только 5, остальные будут пауки.
Итак, в коробке было 5 жуков и 3 паука.
Проверим: у 5 жуков 30 ног, у 3 пауков 24 ноги, а всего 30 + 24 = 54, как и требует условие задачи.
Можно решить задачу и иначе. А именно: можно предположить, что в коробке были только пауки, 8 штук. Тогда всех ног оказалось бы 8 X 8 = 64,- на 10 больше, чем указано в условии. Заменив одного паука жуком, мы уменьшим число ног на 2. Нужно сделать 5 таких замен, чтобы свести число ног к требуемым 54. Иначе говоря, из 8 пауков надо оставить только 3, а остальных заменить жуками
Пошаговое объяснение:
Вероятность рождения девочки: 1 - 0,51 = 0,49.
Вероятность элементарного события "ни одного мальчика": р₀ = 0,49⁶.
Количество таких событий n₀ = 1.
Вероятность события "ни одного мальчика": P₀ = n₀·р₀ = 1·0,49⁶.
Вероятность элементарного события "один мальчик": р₁ = 0,51·0,49⁵.
Количество таких событий n₁ = 6.
Вероятность события "один мальчик": P₁ = n₁·р₁ = 6·0,51·0,49⁵.
Вероятность элементарного события "два мальчика": р₂ = 0,51²·0,49⁴.
Количество таких событий n₂ = С₆² = 6!/(2!·4!) = 15.
Вероятность события "два мальчика": P₂ = n₂·р₂ = 15·0,51²·0,49⁴.
Вероятность события "не более двух мальчиков": Р = Р₀ + Р₁ + P₂.
Р = 1·0,49⁶ + 6·0,51·0,49⁵ + 15·0,51²·0,49⁴ ≈ 0,325