5. В четырехугольнике АВСД, АВ=х см А) запишите остальные стороны в виде алгебраического выражения, согласно условиям: ( ) - ВС на 2см меньше AB - СД в 2,25 раза больше AB - АД на 2см больше СД
Б) Составьте уравнение и найдите длины сторон, если периметр равен 19,5см ( )
Количество всех 4-значных чисел равно 9999-999=9000. Посчитаем вначале количество чисел не удовлетворяющих условию: а именно, тех, у которых в записи вообще нет пятерок, или есть только одна.
1) Если у числа в записи нет пятерок, то первая цифра может принимать любые значения кроме 0 и 5, т.е. всего 8 значений, а остальные цифры могут принимать все значения, кроме 5, т.е. всего 9 значений. Итак, количество таких чисел 8*9³.
2) Если пятерка стоит на первом месте (в старшем разряде), то остальные цифры независимо друг от друга принимают по 9 значений (все кроме 5), т.е. таких чисел 9³.
Когда цифра 5 находится на 2-м, 3-м или 4-м местах, то первая цифра может принимать 8 значений (все кроме 0 и 5), одна из остальных цифр всегда равна 5, и две оставшиеся принимают 9 значений, т.е. общее количество таких чисел 3*8*9²
Итак, общее количество искомых чисел равно 9000-8*9³-9³-3*8*9²=495.
Если из точки, с которой проведены перпендикуляры к сторонам многоугольника провести еще и прямые соединяющие концы сторон многоугольника, то мы получим n-теугольников. Площадь одного такого треугольника равна
(1/2)*l*a, где l – перпендикуляр к стороне многоугольника, а а-сторона многоугольника.
Сложив площади всех треугольников, мы получим площадь многоугольника S=(n/2)*(l1+l2+… +ln)*a
С другой стороны, площадь многоугольника вписанного в окружность равна
Пошаговое объяснение:
Количество всех 4-значных чисел равно 9999-999=9000. Посчитаем вначале количество чисел не удовлетворяющих условию: а именно, тех, у которых в записи вообще нет пятерок, или есть только одна.
1) Если у числа в записи нет пятерок, то первая цифра может принимать любые значения кроме 0 и 5, т.е. всего 8 значений, а остальные цифры могут принимать все значения, кроме 5, т.е. всего 9 значений. Итак, количество таких чисел 8*9³.
2) Если пятерка стоит на первом месте (в старшем разряде), то остальные цифры независимо друг от друга принимают по 9 значений (все кроме 5), т.е. таких чисел 9³.
Когда цифра 5 находится на 2-м, 3-м или 4-м местах, то первая цифра может принимать 8 значений (все кроме 0 и 5), одна из остальных цифр всегда равна 5, и две оставшиеся принимают 9 значений, т.е. общее количество таких чисел 3*8*9²
Итак, общее количество искомых чисел равно 9000-8*9³-9³-3*8*9²=495.
Если из точки, с которой проведены перпендикуляры к сторонам многоугольника провести еще и прямые соединяющие концы сторон многоугольника, то мы получим n-теугольников. Площадь одного такого треугольника равна
(1/2)*l*a, где l – перпендикуляр к стороне многоугольника, а а-сторона многоугольника.
Сложив площади всех треугольников, мы получим площадь многоугольника S=(n/2)*(l1+l2+… +ln)*a
С другой стороны, площадь многоугольника вписанного в окружность равна
S=r*n*a/2
То есть
(n/2)*(l1+l2+… +ln)*a= r*n*a/2
То есть
(l1+l2+… +ln)*a= r*a
Что и надо было доказать