1)Раскройте скобки:
1)a-(-b-(c+d-m)-n+k)
2)a-(b-c+(d-m+n)+k)
3)a+(-b+c-(d-m+n)+k)
2)У выражения и подчеркните коэффицент:
а)-5m(-4n)8k
б) 9/16a(-1 1/3)*3/7
в)-3,8х(-0,35у)*(-4,3)
г)-19,2х(-5/8у)*5/6
3)Решите уравнения
а)-0,4х(-0,8)=-0,96
б)8/9*3 3/5(-2,1х)=20,16
Обозначим (начиная с нижнего левого острого угла) по часовой стрелке ABCD.
Тогда AD = 12 см и AB=8 см
Высоты из угла В - на AD - BE и на CD - BF
<EBF = 60
BE - высота, т. е. BE перпендикулярно AD, значит BD перпендикулярно и BC, т.к.
BC параллельно AD, следовательно, < CBE - прямой и <CBF =90 - <EBF =90-60 =30
BF - высота, она перпендикулярна CD, т.е. треугольник BFC - прямоугольный, значит
<BCF = 90 - <CBF = 90 -30 =60
Но <A = < C, значит <A =60 и можем найти высоту BE из треугольника AEB
BE=AB* cos <A
BE = 8*cos 60 = 8* корень(3)/2 = 4*корень(3)
площадь параллелограмма равна произведению основания на высоту
S = AD*BE = 12*4*корень(3) = 48 * корень(3) кв. см
сорок восемь умножить на корень из трех
Подробнее - на -
1. Несколько уравнений, в которых одноименные неизвестные обозначают одну и ту же величину, называются системой уравнений.
2. Решить такую систему — значит найти множество всех общих для обоих уравнений решений.
3. Решением системы линейных уравнений двух переменных является любая упорядоченная пара, удовлетворяющая каждому уравнению независимо. Мы можем проверить решение, подставив значения в каждое уравнение, чтобы увидеть, удовлетворяет ли упорядоченная пара обоим уравнениям.
4. Две системы уравнений называются равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.