Пусть х км. весь путь, тогда 10х/31 км. - в первый день, 10х/31 * 9/10, т.е. 9х/31 - во второй, х-10х/31-9х/31 - в третий (т.е. от всего пути отнимаем 1 и 2 дни), по условию задачи извесно, что в третий день он на 12 км больше чем во второй, составим уравнение
дробь ровна 0 когда числитель равен нулю а знаменатель при это не теряет смысла:
1) 6cos^2x+cosx-2=0
cosx=t, t принадлежит [ -1; 1]
6t^2+t-2=0
D=1+48=7^2
t=1/2
t=-2/3
cosx=1/2
x=+-pi/3+2pi*n, n принадлежит Z
cosx=-2/3
x=+-(pi-arccos2/3)+2pi*n, n принадлежит Z
2) (3cosx+2)*корень из -tgx=0
3cosx+2=0
cosx=-2/3
x=+-(pi-arccos2/3)+2pi*n, n принадлежит Z
корень из -tgx=0
tgx=0
x=pi*n, n принадлежит Z
далее проверяем корни на отрезке, для этого подставляем каждый поочереди:
1) pi<=pi/3+2pi*n<=3pi/2
умножаем всё на 6
6pi<=2pi+12pi*n<=9pi
переносим 2pi*n
4pi<=12pi*n<=7pi
делим все на 12pi
4/12<=n<=7/12
корней нет
2) pi<=-pi/3+2pi*n<=3pi/2
умножаем все на 6
6pi<=-2pi+12pi*n<=9pi
переносим -2pi
8pi<=12pi*n<=11pi
делим на 12pi
8/12<=n<=11/12
корней нет
теперь проверяем корни с arccos. для того что бы увидеть какие n могут быть нам можно вообще не обращать внимания на этот арк. а так как pi примерно равно 3, мы просто посчитаем. то есть:
Пусть х км. весь путь, тогда 10х/31 км. - в первый день, 10х/31 * 9/10, т.е. 9х/31 - во второй, х-10х/31-9х/31 - в третий (т.е. от всего пути отнимаем 1 и 2 дни), по условию задачи извесно, что в третий день он на 12 км больше чем во второй, составим уравнение
(х-10х/31-9х/31)-9х/31=12
х-10х/31-9х/31-9х/31=12
х-28х/31=12
31х/31-28х/31=12
3х/31=12
3х=12*31
3х=372
х=372/3
х=124
124 км. весь путь
2)124*10/31=40 км - в первый день
3) 40*9/10= 36 км - во второй
3) 36+12=48 км-в третий
Проверка (40+36+48=124)
дробь ровна 0 когда числитель равен нулю а знаменатель при это не теряет смысла:
1) 6cos^2x+cosx-2=0
cosx=t, t принадлежит [ -1; 1]
6t^2+t-2=0
D=1+48=7^2
t=1/2
t=-2/3
cosx=1/2
x=+-pi/3+2pi*n, n принадлежит Z
cosx=-2/3
x=+-(pi-arccos2/3)+2pi*n, n принадлежит Z
2) (3cosx+2)*корень из -tgx=0
3cosx+2=0
cosx=-2/3
x=+-(pi-arccos2/3)+2pi*n, n принадлежит Z
корень из -tgx=0
tgx=0
x=pi*n, n принадлежит Z
далее проверяем корни на отрезке, для этого подставляем каждый поочереди:
1) pi<=pi/3+2pi*n<=3pi/2
умножаем всё на 6
6pi<=2pi+12pi*n<=9pi
переносим 2pi*n
4pi<=12pi*n<=7pi
делим все на 12pi
4/12<=n<=7/12
корней нет
2) pi<=-pi/3+2pi*n<=3pi/2
умножаем все на 6
6pi<=-2pi+12pi*n<=9pi
переносим -2pi
8pi<=12pi*n<=11pi
делим на 12pi
8/12<=n<=11/12
корней нет
теперь проверяем корни с arccos. для того что бы увидеть какие n могут быть нам можно вообще не обращать внимания на этот арк. а так как pi примерно равно 3, мы просто посчитаем. то есть:
3) pi<=pi-arccos2/3+2pi*n<=3pi/2
умножаем все на 2
2pi<=2pi-2arccos2/3+4pi*n<=3pi
переносим 2pi-2arccos2/3
2arccos2/3<=4pi*n<=pi+2arccos2/3
делим на 4pi
2/4pi*arccos2/3<=n<=1/4+2/4pi*arccos2/3
считаем примерно значения
2/6<=n<=1/4+2/6
2/6<=n<=14/24
корней нет
4) pi<=-pi+arccos2/3<=3pi/2
умножаем на 2
2pi<=-2pi+2arccos2/3+4pi*n<=3pi
переносим -2pi+2arccos2/3
4pi-2arccos2/3<=4pi*n<=5pi-2arccos2/3
делим на 4pi
1-2/4pi*arccos2/3<=n<=5/4-2/4pi*arccos2/3
считаем применое значение
1-2/12<=n<=5/4-2/12
10/12<=n<=13/12
n=1
получается корень
-pi+arccos2/3+2pi
5) pi<=pi*n<=3pi/2
умножаем на 2
2pi<=2pi*n<=3pi
делин на 2pi
1<=n<=3/2
n=1
получается корень pi