1. сколькими можно выбрать 2 согласные и 2 гласные буквы в слове «адаптированный»? сколько слов можно получить, меняя порядок букв в этом слове? та же , но если две буквы «н» стоят рядом, не стоят рядом?
2. автомобильные номера состоят из трёх букв и четырех цифр. найти количество таких номеров, если используют 25 букв алфавита.
3. сколькими можно разделить 36 одинаковых тетрадей между шестью студентами? та же , но если каждый должен получить не менее 3-х тетрадей?
4. сколькими группу из 24-х студентов можно расселить в восьми комнатах общежития по три человека в каждой комнате?
5. сколькими различных можно распределить на 4 варианта по 5 в каждом?
6. в урне находятся шары: 11 – синих, 7 – оранжевых, 5 – жёлтых. шары одного цвета неразличимы. сколько существует одновременно вытащить из урны два шара одного цвета?
(1 + 2) * 3 = 9;
1 * 2 * 3 + 4 = 10;
1 - 2 + 3 + 4 + 5 = 11;
тут терпение закончилось
(1 + (2 - 3) * (4 - 5)) * 6 = 12;
- 1 + (2 * (3 - 4) * (5 - 6)) * 7 = 13;
1 * 2 * (3 + 4) + (5 - 6) - (7 - 8) = 14;
(1 * 2 + (- 3 + 4)) * 5 + (-6 + 7) + (8 - 9) = 15;
Пошаговое объяснение:
Месяц или 2 назад скачал крякнутую NeuroNative, там такие же странные задачи были, но с постепенным усложнением.
Суть в том, что ты вспоминаешь как можно было бы получить число справа, к примеру, 9 -- это три умножить на три.
Потом, смотришь, есть ли в последовательности участник получения, условно, девятки. К примеру, в последовательности 1, 2, 3 есть тройка.
Потом, смотришь, можно ли из оставшихся цифр получить других участников получения, условно, девятки. К примеру, можно ли из 1 и 2 получить тройку?
Иногда, оставались числа, которые мне были не нужны, и так как каждое следующее число больше предыдущего на 1, то на их разницу, к примеру на (-5+6), можно умножить всё остальное и тогда результат не изменится! Кроме того, из пары соседних чисел можно получить не только 1, но и -1, а если сложить 1 и -1, то получится ноль, сложение с которым тоже никак не повлияет на результат!
Такие задачи с подбором и угадыванием, очень похожи на то, чем занимаются хакеры, когда пытаются понять, куда в программу можно вставить свой код, не сломав её, или по какому адресу в памяти лежит доступ к нужной переменной, или к нужному функционалу.
Не уклоняйтесь от них :-)
3 гири весами 3 (единиц), 4 (единиц) и 5 (единиц)
Пошаговое объяснение:
Рассмотрим варианты по числу гирь, начиная с наименьшего числа гирь.
Число гирь не может быть равным 2, так как в первом случае тяжёлая из гирь 2 раза тяжелее чем лёгкая, а во втором случае тяжёлая из гирь 3 раза тяжелее чем лёгкая.
Рассмотрим гири весами: 3 (единиц), 4 (единиц) и 5 (единиц). Тогда:
1) в первом случае:
в левой руке гиря весом 4 (единиц), а в правой руке гири весами 3 (единиц)+5 (единиц) = 8 (единиц), то есть в 2 раза тяжелее другой;
2) во втором случае:
в левой руке гиря весом 3 (единиц), а в правой руке гири весами 4 (единиц)+5 (единиц) = 9 (единиц), то есть в 3 раза тяжелее другой.