Докажем, что если после случайного распределения участков ни одному из дачников не достался лучший на его взгляд участок (*), то возможно перераспределить участки так, чтобы каждому достался более хороший на его взгляд участок. В условии же сказано, что распределение оказалось таково, что при любом другом, хотя бы одному достался бы более плохой участок. Если мы докажем вышеизложенное утверждение, то по противоречию будет следовать, что распределение не отвечает условию (*), а значит задача решена.
Рассмотрим таблицу , где за строками скрываются дачники, а за столбцами - участки. В пересечении строки и столбца будет стоять число , которое равно месту, которое отдал i-ый дачник j-ому участку.
Пусть произошло распределение по условию (*). Пусть i-ому участнику достался участок с местом (на его взгляд) i; Тогда существует участок, который лучше того, который ему достался. Аналогично для остальных дачников. Для того, чтобы перераспределить участки необходимо, чтобы сумма всех участков, которые лучше того, что достались дачнику была не меньше общего количества дачников (иначе были бы пересечения и на один участок претендовало бы не менее двух дачников). То есть ; Так как никому не досталось первое место, а у каждого место не выше второго, то действительно сумма мест не меньше удвоенного количества дачников. Неравенство справедливо, а, значит, задача решена
Докажем, что если после случайного распределения участков ни одному из дачников не достался лучший на его взгляд участок (*), то возможно перераспределить участки так, чтобы каждому достался более хороший на его взгляд участок. В условии же сказано, что распределение оказалось таково, что при любом другом, хотя бы одному достался бы более плохой участок. Если мы докажем вышеизложенное утверждение, то по противоречию будет следовать, что распределение не отвечает условию (*), а значит задача решена.
Рассмотрим таблицу , где за строками скрываются дачники, а за столбцами - участки. В пересечении строки и столбца будет стоять число , которое равно месту, которое отдал i-ый дачник j-ому участку.
Пусть произошло распределение по условию (*). Пусть i-ому участнику достался участок с местом (на его взгляд) i; Тогда существует участок, который лучше того, который ему достался. Аналогично для остальных дачников. Для того, чтобы перераспределить участки необходимо, чтобы сумма всех участков, которые лучше того, что достались дачнику была не меньше общего количества дачников (иначе были бы пересечения и на один участок претендовало бы не менее двух дачников). То есть ; Так как никому не досталось первое место, а у каждого место не выше второго, то действительно сумма мест не меньше удвоенного количества дачников. Неравенство справедливо, а, значит, задача решена
а) сумма 3 x и 5 x равна 96
3х + 5х = 96
8х = 96
х = 96 : 8
х = 12
проверка: 3 * 12 + 5 * 12 = 36 + 60 = 96 - верно
б) разность 11у и 2у равна 99
11 у - 2 у = 99
9 у = 99
у = 99 : 9
у = 11
проверка: 11 * 11 - 2 * 11 = 121 - 22 = 99 - верно
в) 3z больше, чем z на 48
3z - z = 48
2z = 48
z = 48 : 2
z = 24
проверка: 3 * 24 - 24 = 72 - 24 = 48 - верно
г) 27m на 12 меньше, чем 201.
27 м + 12 = 201
27 м = 201 - 12
27 м = 189
м = 189 : 27
м = 7
проверка: 27 * 7 + 12 = 189 + 12 = 201 - верно
д) 8n вдвое меньше чем 208
208 :( 8n) = 2
8n = 208 : 2
8n = 104
n = 104 : 8
n = 13
проверка: 208 : (8 * 13) = 208 : 104 = 2 - верно
е) 380 в 19 раз больше чем 10 р
380 : (10р) = 19
10 р = 380 : 19
10р = 20
р = 20 : 10
р = 2
проверка : 380 : ( 10 * 2) = 380 : 20 = 19 - верно