1. В параллелограмме ABCD точка М – середина стороны AD, Р – точка пересечения отрезка ВМ с диагональю АС.
а) Докажите, что прямая DP проходит через середину стороны АВ.
б) Биссектриса угла ВАС пересекает отрезок ВМ в точке Q. Найдите отношение РМ : BQ, если известно, что АВ : АС = 1 : 3.
2. На стороне ВС треугольника АВС как на диаметре построена окружность, пересекающая отрезок АВ в точке D. При этом .
а) Докажите, что прямая CD разбивает треугольник АВС на два подобных треугольника.
б) Найдите отношение площадей этих подобных треугольников, если известно, что АС = 15, ВС = 20.
56 = 2 * 2 * 2 * 7
70 = 2 * 5 * 7
НОК (56; 70) = 2 * 2 * 2 * 5 * 7 = 280 - наименьшее общее кратное
НОД (56; 70) = 2 * 7 = 14 - наибольший общий делитель
78 = 2 * 3 * 13
792 = 2 * 2 * 2 * 3 * 3 * 11
НОК (78; 792) = 2 * 2 * 2 * 3 * 3 * 11 * 13 = 10296 - наименьшее общее кратное
НОД (78; 792) = 2 * 3 = 6 - наибольший общий делитель
320 = 2 * 2 * 2 * 2 * 2 * 2 * 5
720 = 2 * 2 * 2 * 2 * 3 * 3 * 5
НОК (320; 720) = 2 * 2 * 2 * 2 * 2 * 2 * 3 * 3 * 5 = 2880
НОД (320; 720) = 2 * 2 * 2 * 2 * 5 = 80 - наибольший общий делитель
252 = 2 * 2 * 3 * 3 * 7
840 = 2 * 2 * 2 * 3 * 5 * 7
НОК (252; 840) = 2 * 2 * 2 * 3 * 3 * 5 * 7 = 2520 - наименьшее общее кратное
НОД (252; 840) = 2 * 2 * 3 * 7 = 84 - наибольший общий делитель