№1. В урне 15 белых и 11 черных шаров. Наудачу достали один шар. Какова вероятность, что он:
А) белый
Б) черный
№2. Сколькими можно выпустить на арену один за другим 2-х львов из 13 львов?
№3. В урне 10 белых и 11 черных шара. Наудачу извлекаются 4 шара, найти вероятности, что среди извлеченных шаров:
А) все белые
Б) три белые, один черный
В) два белые, два черные
3=5sin<A
sin<A=3/5
BA=ACcos<A
4=5cos<A
cos<A=4/5
CB=ABtg<A
3=4tg<A
tg<A=3/4
2)BC=ACsin<A
12=13sin<A
<A=12/13
AB^2=AC^2-BC^2=169-144=25; AB=5
AB=CBtg<C
5=12tg<C
tg<C=5/12
3)BC=ACcos<C=15*0,6=9
4)Другой острый угол равен 180-(90+60)=30 град
Катет противолежащий углу 30 град равен 1/2 гипотенузы, значит катет равен 8/2=4см. Тогда по теореме Пифагора второй катет равен
sqrt 64-16=sqrt 48=4 sqrt 3см
5)Высота BD делит треугольник АВС на два прямоугольных треугольника. Рассмотрим треугольник ABD. BD=ABsin<A; h=ABsina; AB=h/sina. Так как треугольник равнобедренный,то АВ=ВС=h/sina
6)Обозначим ромб как АВСД. Тогда угол АВС=60 град. ВД=10. Проведем вторую диагональ АС. Пусть диагонали ромба пересекаются в точке О. Диагонали являются биссектрисами его углов,тогда угол АВО=углу ОВС=30град. При пересечении диагонали точкой пересечения делятся по палам т.е. ВО=ОД=5. Рассмотрим треугольник АВО-прямоугольный,т.к. диагонали ромба пересекаются под прямым углом.Найдем сторону ромба: ВО=АВсos<OAB; 5=АВ cos30; 5=АВ sqrt3/2; АВ=10/sqrt3. АО= 5tg<ABO; AO=5tg30; AO=5*sqrt3/3, тогда диагональ равна 2АО=АС=10sqrt3/3
7) Так как трапеция равнобедренная,то углы у нее при основаниях равны, <A=<D=a. Треугольник ACD-прямоугольный. Тогда CD=ADcos<D;
CD=bcosa. опусти из вершины тупого угла С высоту на основание трапеции AD и обозначим ее СН. Треугольник CHD-прямоугольный. Найдем СН. СН= CDsin<D=bcosasina. Теперь найдем HD. HD=CDcos<D=
=bcos^2a. Из вершины В опусти так же высоту и обозначим ВН1. так трапеция равнобедренная,то АН1=HD=bcos^2a. Тогда BC=AD-2AH1=
=b-2bcos^2a
P= AB+BC+CD+AD=2bcosa+b-2bcos^2a+b=2bcos^2a+2bcosa+2b :(2b)
cos^2a+cosa+1
S=AB+BC/2*CH=2b-2bcos^2a/2*bcos^2a=(1-cos^2a)b^2cos^2a
1) х + 2х + 3х = 840, приводим подобные в левой части и получаем 6х = 840, находим х, применяя правило: чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель, тогда х = 840 : 6 х = 140 – фрезеровщиков будут работать на заводе Далее опять обращаемся к условию задачи, в котором говорится, что слесарей будет вдвое больше, чем фрезеровщиков, значит, 2) 140 × 2 = 280 – слесарей будут работать на заводеДалее опять обращаемся к условию задачи, в котором говорится, что токарей будет втрое больше, чем фрезеровщиков, значит, 3) 140 × 3 = 420 – токарей будут работать на заводе
Мы могли не выполнять второе действие и не узнавать, сколько слесарей будет работать на заводе, потому что в условии задачи нас об этом не спрашивали, мы вычислили это для того, чтобы сделать проверку.
ПРОВЕРКА: 140 + 280 + 420 = 840 840 = 840 (задача решена верно)
ответ: 420 токарей будут работать на заводе