В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mihajlovalena45
mihajlovalena45
31.08.2020 03:54 •  Математика

1.вычислите площадь фигуры, ограниченной линиями. y^2=x^3 и y=1 и осью oy 2.при каком наибольшем значении а функция f(x) = 2/3x^3-ax^2+ax+7 возрастает на всей числовой прямой? кто может ? ?

Показать ответ
Ответ:
kubikrubik201
kubikrubik201
08.07.2020 09:53
1) Площадь фигуры находится с интеграла.
y^{2}=x^{3}, y=x^{1.5}
Определим вначале пределы интегрирования - т.е. точки пересечения графиков:
x^{1.5}=1, x=1 - это верхний предел. Нижний предел x=0 (т.к. в образовании фигуры участвует ось Оу).
S= \int\limits^1_0 {(1-x^{1.5})} \, dx = x- \frac{x^{2.5}}{2.5} |^{1}_{0}=1- \frac{2}{5}= \frac{3}{5} - чтобы определить, от какого выражения брать интеграл, нужно из "верхней" функции (по графическому расположению) вычесть "нижнюю" функцию.

2) Возьмем производную:
y'= \frac{2}{3} *3x^{2}-2ax+a=2x^{2}-2ax+a

Чтобы функция возрастала на всей числовой прямой, необходимо чтобы ее производная была неотрицательна при любом х.
2x^{2}-2ax+a \geq 0 при любом х
Парабола ветвями вверх, чтобы она была не ниже оси Ох, дискриминант должен быть неположительным: D ≤ 0
D=8a^{2}-8a \leq 0
8a(a-1) \leq 1
0 \leq a \leq 1
Наибольшее значение а из данного промежутка: a=1
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота