1)who is the chairman in the house of lords? 2)who is the chairman in the house of commons? 3)what does the queen do in the parliament? 4)what does the parliament do? 5)is the british parliament the oldest in the world? ответ по ,буквально в одно
Количество всех 4-значных чисел равно 9999-999=9000. Посчитаем вначале количество чисел не удовлетворяющих условию: а именно, тех, у которых в записи вообще нет пятерок, или есть только одна.
1) Если у числа в записи нет пятерок, то первая цифра может принимать любые значения кроме 0 и 5, т.е. всего 8 значений, а остальные цифры могут принимать все значения, кроме 5, т.е. всего 9 значений. Итак, количество таких чисел 8*9³.
2) Если пятерка стоит на первом месте (в старшем разряде), то остальные цифры независимо друг от друга принимают по 9 значений (все кроме 5), т.е. таких чисел 9³.
Когда цифра 5 находится на 2-м, 3-м или 4-м местах, то первая цифра может принимать 8 значений (все кроме 0 и 5), одна из остальных цифр всегда равна 5, и две оставшиеся принимают 9 значений, т.е. общее количество таких чисел 3*8*9²
Итак, общее количество искомых чисел равно 9000-8*9³-9³-3*8*9²=495.
Если из точки, с которой проведены перпендикуляры к сторонам многоугольника провести еще и прямые соединяющие концы сторон многоугольника, то мы получим n-теугольников. Площадь одного такого треугольника равна
(1/2)*l*a, где l – перпендикуляр к стороне многоугольника, а а-сторона многоугольника.
Сложив площади всех треугольников, мы получим площадь многоугольника S=(n/2)*(l1+l2+… +ln)*a
С другой стороны, площадь многоугольника вписанного в окружность равна
Пошаговое объяснение:
Количество всех 4-значных чисел равно 9999-999=9000. Посчитаем вначале количество чисел не удовлетворяющих условию: а именно, тех, у которых в записи вообще нет пятерок, или есть только одна.
1) Если у числа в записи нет пятерок, то первая цифра может принимать любые значения кроме 0 и 5, т.е. всего 8 значений, а остальные цифры могут принимать все значения, кроме 5, т.е. всего 9 значений. Итак, количество таких чисел 8*9³.
2) Если пятерка стоит на первом месте (в старшем разряде), то остальные цифры независимо друг от друга принимают по 9 значений (все кроме 5), т.е. таких чисел 9³.
Когда цифра 5 находится на 2-м, 3-м или 4-м местах, то первая цифра может принимать 8 значений (все кроме 0 и 5), одна из остальных цифр всегда равна 5, и две оставшиеся принимают 9 значений, т.е. общее количество таких чисел 3*8*9²
Итак, общее количество искомых чисел равно 9000-8*9³-9³-3*8*9²=495.
Если из точки, с которой проведены перпендикуляры к сторонам многоугольника провести еще и прямые соединяющие концы сторон многоугольника, то мы получим n-теугольников. Площадь одного такого треугольника равна
(1/2)*l*a, где l – перпендикуляр к стороне многоугольника, а а-сторона многоугольника.
Сложив площади всех треугольников, мы получим площадь многоугольника S=(n/2)*(l1+l2+… +ln)*a
С другой стороны, площадь многоугольника вписанного в окружность равна
S=r*n*a/2
То есть
(n/2)*(l1+l2+… +ln)*a= r*n*a/2
То есть
(l1+l2+… +ln)*a= r*a
Что и надо было доказать