В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
zhenyaminaev2
zhenyaminaev2
17.07.2022 23:53 •  Математика

((1-y^1,5)/(1-y^0,5)+y^0,+y^1,5)/(1+y^0,5)-y^0,5) выражение

Показать ответ
Ответ:
Mukadas1208
Mukadas1208
28.09.2020 13:59
((1-y^1,5)/(1-y^0,5)+y^0,5)((1+y^1,5)/(1+y^0,5)-y^0,5)упростите выражение
Решение:
(\frac{1-y^{1,5}}{1- \sqrt{y}}+ \sqrt{y})(\frac{1+y^{1,5}}{1+ \sqrt{y}}- \sqrt{y})
Для решения применяем формулы суммы и разности кубов
a3 + b3 = (a + b) (a2 - ab + b2)
a3 - b3 = (a - b) (a2 + ab + b2)
В нашем случае
1-y^{1,5}=1^3-( \sqrt{y})^3=(1- \sqrt{y})(1+ \sqrt{y}+y)
1+y^{1,5}=1^3+( \sqrt{y})^3=(1+ \sqrt{y})(1- \sqrt{y}+y)
Следовательно можно записать
\frac{1-y^{1,5}}{1- \sqrt{y}}+ \sqrt{y}=\frac{(1- \sqrt{y})(1+ \sqrt{y}+y)}{1- \sqrt{y}}+ \sqrt{y}=1+ \sqrt{y}}+ y+\sqrt{y}=1+2 \sqrt{y}+ y=
=(1+√y)²
\frac{1+y^{1,5}}{1+ \sqrt{y}}- \sqrt{y}=\frac{(1+ \sqrt{y})(1- \sqrt{y}+y)}{1+ \sqrt{y}}- \sqrt{y}=1- \sqrt{y}}+ y-\sqrt{y}=1-2 \sqrt{y} +y=
=(1-√y)²
(\frac{1-y^{1,5}}{1- \sqrt{y}}+ \sqrt{y})(\frac{1+y^{1,5}}{1+ \sqrt{y}}- \sqrt{y})=(1- \sqrt{y})^2(1+ \sqrt{y})^2=(1-y)^2=1-2y+y²

ответ:1-2y+y²
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота