1. Задана функция распределения дискретной случайной величины X. Найдите плотность вероятности. 2. Задана плотность вероятности случайной величины X. Постройте ее график. Найдите коэффициент а.
5 - 2 = 3. Т.е. 3 жителя являются рыцарями, если по условию 2 лжеца из 5.
1) Если А - лжец, то лжец Б, который назвал А рыцарем, и В, который назвал рыцарем Б, и , далее, Г и Д, т.к. каждый называет рыцарем себя и предыдущего. Получается, что все - лжецы. Противоречие. Значит, А - действительно рыцарь.
2) Если Б лжец, то лжец В, считающий его и себя рыцарем, и Г, считающий рыцарем В, и Д, считающий рыцарем Г. Но 4 лжеца противоречат условию, Значит, Б - тоже рыцарь
3) Если В - лжец, то лжец Г, считающий его рыцарем, и Д, считающий рыцарем Г, значит, В говорит правду и он - рыцарь.
4) Имеем ужу 3 рыцаря - А, Б, В, значит, Г и Д - лжецы, так как по условию имеются 2 лжеца.
5) Г сказал: «И я, и В – мы оба рыцари.» И он солгал, что оба, а на самом деле рыцарь только В. Т.е. противоречий в том, что Г лжец нет
6) Д сказал: «И я, и Г – мы оба рыцари.»Противоречий к тому, что это ложь нет.
Задачка на производительность. Пусть вся работа (покраска забора) равна 1. Паша может покрасить весь забор за П часов.Тогда производительность Паши равна 1/П. Таким же образом производительность Игоря равна 1/И, а производительность Володи равна 1/В. Производительность Игоря и Паши равна (1/И+1/П)=1/20. (1) Производительность Паши и Володи равна (1/П+1/В)=1/24.(2) Производительность Володи и Игоря равна (1/В+1/И)=1/30.(3) Имеем систему трех уравнений. Вычтем из первого второе: 1/И-1/В=1/20-1/24=1/120. Теперь сложим получившийся результат с (3): (1/И-1/В=1/120) +(1/В+1/И=1/30) . В результате имеем: 2/И=5/120=1/24. Значит 1/И=1/48. Это производительность Игоря. Тогда из (3) получим производительность Володи: 1/В=1/48-1/120=1/80. Производительность Паши из (1) или (2) равна 1/20-1/48=7/240 или 1/24-1/80=7/240 (естественно, одно и то же). Зная производительность троих, находим их производительность при совместной работе: 1/48+1/80+7/240=15/240=1/16. Значит всю работу втроем они выполнят за 16 часов.
Г и Д
Пошаговое объяснение:
5 - 2 = 3. Т.е. 3 жителя являются рыцарями, если по условию 2 лжеца из 5.
1) Если А - лжец, то лжец Б, который назвал А рыцарем, и В, который назвал рыцарем Б, и , далее, Г и Д, т.к. каждый называет рыцарем себя и предыдущего. Получается, что все - лжецы. Противоречие. Значит, А - действительно рыцарь.
2) Если Б лжец, то лжец В, считающий его и себя рыцарем, и Г, считающий рыцарем В, и Д, считающий рыцарем Г. Но 4 лжеца противоречат условию, Значит, Б - тоже рыцарь
3) Если В - лжец, то лжец Г, считающий его рыцарем, и Д, считающий рыцарем Г, значит, В говорит правду и он - рыцарь.
4) Имеем ужу 3 рыцаря - А, Б, В, значит, Г и Д - лжецы, так как по условию имеются 2 лжеца.
5) Г сказал: «И я, и В – мы оба рыцари.» И он солгал, что оба, а на самом деле рыцарь только В. Т.е. противоречий в том, что Г лжец нет
6) Д сказал: «И я, и Г – мы оба рыцари.»Противоречий к тому, что это ложь нет.
ответ: Г и Д - лжецы.
Производительность Игоря и Паши равна (1/И+1/П)=1/20. (1)
Производительность Паши и Володи равна (1/П+1/В)=1/24.(2)
Производительность Володи и Игоря равна (1/В+1/И)=1/30.(3)
Имеем систему трех уравнений.
Вычтем из первого второе: 1/И-1/В=1/20-1/24=1/120. Теперь сложим получившийся результат с (3):
(1/И-1/В=1/120) +(1/В+1/И=1/30) . В результате имеем:
2/И=5/120=1/24. Значит 1/И=1/48. Это производительность Игоря.
Тогда из (3) получим производительность Володи:
1/В=1/48-1/120=1/80.
Производительность Паши из (1) или (2) равна 1/20-1/48=7/240 или 1/24-1/80=7/240 (естественно, одно и то же).
Зная производительность троих, находим их производительность при совместной работе: 1/48+1/80+7/240=15/240=1/16.
Значит всю работу втроем они выполнят за 16 часов.