1 задания
В ящике лежат 6 белых и 5 красных шаров. Из ящика наугад выбираются 2 шарика. Какова вероятность того, что:
• Вариант 1 – шарики будут оба белыми?
• Вариант 2 – шарики будут оба красными?
2 задания
Двое друзей договорились о встрече в условленном месте между 12 и 13 часами. Пришедший первым ждет второго в течение 20 минут. Какова вероятность того, что:
• Вариант 1 – друзья встретятся?
• Вариант 2 – друзья не встретятся?
h = r + 12
h * r = 288
подставляешь 1-е уравнение во второе, получаешь следующее уравнение:
r * (r + 12) = 288 => |решая квадратное уравнение, находишь что r = 12|
подставляешь r в 1-е уравнение и находишь: h = 12 + 12 = 24
2) a) |сначала находишь малый катет, он равняется 11 - 5 = 3, а далее по теореме Пифагора, находишь высоту| h =SQRT(10 * 10 - 6 * 6) = SQRT(64) = 8 см (SQRT - корень квадратный)
б) площадь осевого сечения - это площадь равнобедренной трапеции: Sсеч = 1/2 * (a + b) * h = 1/2 * (5*2 + 11*2) * 8 = 128 см^2
в) площадь поверхности усеченного конуса определяется как: Sпов = Pi * (r1 + r2) * l = |Pi = 3,14; r1 = 5см, r2 = 10см; l =10 см| = 3,14 * 15 * 10 = 471 см^2
3) Сечение шара плоскостью — это круг. В центре шара располагается т. O. Точка B - это точка пересечения плоскости сечения и оси шара, отрезок OB = 9 дм. Проведем радиус из центра шара к окружности в точку пересечения с плоскостью сечения - это будет т. A, и соответственно ОА = 41дм.
Отрезок AB перпендикулярен отрезку OB.
Задача сводится к нахождению радиуса сечения (отрезок AB), а зная его, мы сможем найти площадь сечения.
AB = SQRT(OA^2 - OB^2) = SQRT(41*41 - 9-9) = SQRT(1681 - 81) = SQRT(1600) = 40 дм
Sсеч = (Pi * AB^2) / 2 = (3,14 * 40*40) / 2 = 5024 дм^2
2) Каждый раз в лодке должны быть люди разных наций.
китаец с малайцем, малаец возвращается,
второй китаец с малайцем, малаец возвращается,
третий китаец с малайцем, малаец возвращается,
малаец с индусом, малаец возвращается, малаец с арабом.
3) Суммы периметров противоположных частей должны быть равны.
4 + x = 9 + 16
x = 9 + 16 - 4 = 21
4) Возьмем две противоположные грани, ABCD и A1B1C1D1.
Пусть сумма чисел на ABCD равна x, тогда сумма на A1B1C1D1 равна 1,5x.
Тогда сумма чисел на всех вершинах равна
x + 1,5x = 2,5x = 2016
x = 2016/2,5 = 2016*2/5 = 4032/5 - не целое число.
ответ: Сумма 2016 быть не может.
P. S. А вот 2015 может, тогда x = 2015*2/5 = 806