10. Что такое определитель 3-го порядка?
а. вектор, координатами которого являются элементы, стоящие на главной
диагонали матрицы;
б. вектор, координатами которого являются элементы, стоящие на побочной
диагонали матрицы;
в. некоторое число, определенным образом сопоставленное с матрицей;
г. Решение системы уравнений, из коэффициентов которой составлена
матрица.
11. Чему равен определитель третьего порядка, все элементы третьей строки которого равны нулю?
а. произведению элементов главной диагонали;
б. произведение элементов 1 строки + произведение элементов 2 строки;
в. нулю;
г. среди перечисленных ответов правильного нет.
12. Что можно сказать о двух матрицах, если строки первой являются столбцами второй?
а. определитель второй матрицы является величиной обратной по отношению к определителю первой;
б. эти матрицы ничем не отличаются друг от друга;
в. их определители равны между собой;
г. среди перечисленных ответов правильного нет.
13. Что произойдет с определителем, если поменять местами какие-либо 2 столбца?
а. определитель от этого не изменится;
б. абсолютная величина определителя останется прежней, изменится только его знак;
в. абсолютная величина определителя уменьшится;
г. абсолютная величина определителя увеличится.
14. Как изменится определитель 3-го порядка, если все элементы какой-либо строки умножить на какое-либо число?
а. определитель останется прежним;
б. определитель станет равным нулю;
в. определитель умножится на это число;
г. среди перечисленных ответов правильного нет.
15. Чему равен определитель третьего порядка, в котором какие-либо 2 строки совпадают?
а. нулю;
б. произведению несовпадающих элементов;
в. произведению элементов главной диагонали;
г. произведению элементов побочной диагонали.
5/Задание № 1:
Назовите число, утроенная четверть которого равна половине от 120.
РЕШЕНИЕ: Если утроенная четверть равна (1/2)*120=60, то просто четверть равна 60/3=20, а значит само число 20*4=80.
ОТВЕТ: 80
5/Задание № 2:
Сколько четырёхзначных чисел, которые делятся на 45, две средние цифры которых 88?
РЕШЕНИЕ: Число, делящееся на 45, делится на 5 и делится на 9. Значит, оно должно оканчиваться на 0 или 5, и его сумма цифр должна делиться на 9.
Обозначим первую цифру за х.
Если последняя цифра 0, то сумма цифр равна х+8+8+0=х+16. Учитывая, что (х+16) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=2.
Если последняя цифра 5, то сумма цифр равна х+8+8+5=х+21. Учитывая, что (х+21) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=6.
Итак, всего два числа 2880 и 6885 удовлетворяют условию.
ОТВЕТ: 2 числа
5/Задание № 3:
Сумма двух чисел равна 627. Одно из чисел оканчивается нулём. Если этот нуль зачеркнуть, то получится второе число. Найдите разность этих двух чисел.
РЕШЕНИЕ: Пусть первое число 10х. При зачеркивании последнего нуля оно становится в 10 раз меньше, то есть становится равно х. Их сумма по условию:
10х+х=627
11х=627
х=627/11
х=57
Разность чисел 10х-х=9х=9*57=513
ОТВЕТ: 513
5/Задание № 4:
У Вани было 140 рублей монетами достоинством 2, 5 и 10 рублей. Двухрублёвых монет было в 5 раз больше, чем пятирублёвых, а десятирублёвых в 2 раза больше, чем пятирублёвых. Сколько всего монет было у Вани?
РЕШЕНИЕ: Пусть у Вани было х пятирублевых монет, тогда двухрублёвых было 5х, а десятирублёвых было 2х. Всего монет в этом случае было х+5х+2х=8х. Общая сумма денег:
5х+2*5х+10*2х=140
5х+10х+20х=140
35х=140
х=140/35
х=4
Число монет 8х=8*4х=32
ОТВЕТ: 32 монеты
5/Задание № 1:
Назовите число, утроенная четверть которого равна половине от 120.
РЕШЕНИЕ: Если утроенная четверть равна (1/2)*120=60, то просто четверть равна 60/3=20, а значит само число 20*4=80.
ОТВЕТ: 80
5/Задание № 2:
Сколько четырёхзначных чисел, которые делятся на 45, две средние цифры которых 88?
РЕШЕНИЕ: Число, делящееся на 45, делится на 5 и делится на 9. Значит, оно должно оканчиваться на 0 или 5, и его сумма цифр должна делиться на 9.
Обозначим первую цифру за х.
Если последняя цифра 0, то сумма цифр равна х+8+8+0=х+16. Учитывая, что (х+16) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=2.
Если последняя цифра 5, то сумма цифр равна х+8+8+5=х+21. Учитывая, что (х+21) должно делиться на 9, а само х - однозначное, получаем единственное решение при х=6.
Итак, всего два числа 2880 и 6885 удовлетворяют условию.
ОТВЕТ: 2 числа
5/Задание № 3:
Сумма двух чисел равна 627. Одно из чисел оканчивается нулём. Если этот нуль зачеркнуть, то получится второе число. Найдите разность этих двух чисел.
РЕШЕНИЕ: Пусть первое число 10х. При зачеркивании последнего нуля оно становится в 10 раз меньше, то есть становится равно х. Их сумма по условию:
10х+х=627
11х=627
х=627/11
х=57
Разность чисел 10х-х=9х=9*57=513
ОТВЕТ: 513
5/Задание № 4:
У Вани было 140 рублей монетами достоинством 2, 5 и 10 рублей. Двухрублёвых монет было в 5 раз больше, чем пятирублёвых, а десятирублёвых в 2 раза больше, чем пятирублёвых. Сколько всего монет было у Вани?
РЕШЕНИЕ: Пусть у Вани было х пятирублевых монет, тогда двухрублёвых было 5х, а десятирублёвых было 2х. Всего монет в этом случае было х+5х+2х=8х. Общая сумма денег:
5х+2*5х+10*2х=140
5х+10х+20х=140
35х=140
х=140/35
х=4
Число монет 8х=8*4х=32
ОТВЕТ: 32 монеты