10 МИНУТ ОСТАЛОСЬ, МОЖНО БЕЗ ОБЪЯСНЕНИЯ, И ПОДПИШУСЬ Петя и Вася живут в разных комнатах. У каждого в комнате есть 9 встроенных розеток и очень много смартфонов с зарядными устройствами для каждого из них. Ребята решили выяснить кто из них сможет включить в электрическую сеть больше зарядных устройств. Известно, что у Пети имеются только 25 удлинителей, оканчивающихся двойной розеткой, а у Васи – только 13 удлинителей, оканчивающихся тройной розеткой. Каждое зарядное устройство и каждый удлинитель мо
Первое задание. Первая дробь: 18/28 сокращаешь на 2, получается 9/14
Вторую дробь сокращаешь на 3. Получается 21/27
Второе задание. Чтобы сравнить, нужно привести к общему знаменателю (число под чертой). Под цифрой 1 первую дробь приводим к знаменателю 26,для этого умножаем первую дробь)(6/13) на 2, получаем 12/26. Теперь сравниваем 12/26>11/26
Под цифрой 2 по аналогии, к общему знаменателю (40), умножаем первую дробь на 5,вторую дробь на 8. Получаем 15/40 и 16/40, соответственно вторая дробь больше
Третье задание: 1) общий знаменатель 72,дополнительный множитель для первой дроби 9,для второй 8,получаем 59/72
2)общий знаменатель 24,доп множитель для первой дроби 2,для второй 3,получаем 5/24
3)общий знаменатель 40,дополнительные множители 5 и 4 соответственно, ответ 177/40
4)общий знаменатель 60,дополн множ к первой дроби 6,ко второй 5,ответ 177/60
Четвёртое задание (смотри фото)
Пятое и шестое (смотри фото)
Вроде всё, удачи!
Найдите критические точки функции и определите, какие из них является точками максимума и минимума.
Находим производную и приравниваем её нулю:
y' = -2x + 12 = 0.
x = 12/2 = 6.
То есть критическая точка только одна.
Это следует из того, что график заданной функции - парабола ветвями вниз (коэффициент перед х² отрицателен).
У такой параболы есть только максимум в её вершине Хо.
Хо = -в/2а = -12/2*(-1) = 6.
Можно провести исследование по знаку производной вблизи критической точки.
х = 5.5 6 6.5
y' = -2x + 12 1 0 -1.
Если производная меняет знак с + на - то это максимум функции, минимума нет.
3) найдите наибольшее и наименьшее значение функции: y=x^4-8x^2-9 на промежутке [-1;3].
y' = 4x³ -16x = 0.
4x(x²-4) = 0.
Имеем 3 корня: х = 0, х = 2 и х = -2.
х = -2.5 -2 -1.5 -0.5 0 0.5 1.5 2 2.5
y' = 4x³ -16x -22.5 0 10.5 7.5 0 -7.5 -10.5 0 22.5.
х = -2 и 2 это минимум, у = -25.
х = 0 это максимум, у = -9