Оба уравнения в системе задают окружности. Первое уравнение - окружность с центром в точке О и радиусом 4. Параметр а во втором уравнении при увеличении значения двигается окружность по оси Х вправо, при уменьшении влево соответсвенно. Если a = 0, имеем уравнение x^2+y^2=1 (окружность с центром в т. О и радиусом 1). Система при этом не будет иметь решений (окружности не пересекаются). Одно решение система имеет при а = ±3 и а=±5. Два решения при -5<a<-3 и 3<a<5. Наибольшим целым а тогда будет 4.
1) Найти области определения и значений данной функции f.
Для аргумента и функции нет ограничений: их значения - вся числовая ось.
2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:
f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.
б) не периодическая.
3) Вычислить координаты точек пересечения графика с осями координат:
- пересечение с осью Оу (х = 0), у = -1.
- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.
4) Найти промежутки знакопостоянства функции f.
На основе нулей функции имеем:
- функция отрицательна при х < 1 (x ∈ (-∞; 1),
- функция положительна при х > 1 (x ∈ (1; +∞).
5) на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.
Находим производную функции и приравниваем нулю.
y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.
Поэтому не имеет ни минимума, ни максимума.
6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.
4
Пошаговое объяснение:
Оба уравнения в системе задают окружности. Первое уравнение - окружность с центром в точке О и радиусом 4. Параметр а во втором уравнении при увеличении значения двигается окружность по оси Х вправо, при уменьшении влево соответсвенно. Если a = 0, имеем уравнение x^2+y^2=1 (окружность с центром в т. О и радиусом 1). Система при этом не будет иметь решений (окружности не пересекаются). Одно решение система имеет при а = ±3 и а=±5. Два решения при -5<a<-3 и 3<a<5. Наибольшим целым а тогда будет 4.
1) Найти области определения и значений данной функции f.
Для аргумента и функции нет ограничений: их значения - вся числовая ось.
2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:
f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.
б) не периодическая.
3) Вычислить координаты точек пересечения графика с осями координат:
- пересечение с осью Оу (х = 0), у = -1.
- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.
4) Найти промежутки знакопостоянства функции f.
На основе нулей функции имеем:
- функция отрицательна при х < 1 (x ∈ (-∞; 1),
- функция положительна при х > 1 (x ∈ (1; +∞).
5) на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.
Находим производную функции и приравниваем нулю.
y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.
Поэтому не имеет ни минимума, ни максимума.
6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.
7) Асимптот функция не имеет.